MakeItFrom.com
Menu (ESC)

Nickel 686 vs. EN 1.7233 Steel

Nickel 686 belongs to the nickel alloys classification, while EN 1.7233 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is nickel 686 and the bottom bar is EN 1.7233 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 220
190
Elongation at Break, % 51
18 to 23
Fatigue Strength, MPa 410
270 to 530
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 77
73
Shear Strength, MPa 560
450 to 590
Tensile Strength: Ultimate (UTS), MPa 780
700 to 960
Tensile Strength: Yield (Proof), MPa 350
380 to 780

Thermal Properties

Latent Heat of Fusion, J/g 320
250
Maximum Temperature: Mechanical, °C 980
430
Melting Completion (Liquidus), °C 1380
1460
Melting Onset (Solidus), °C 1340
1420
Specific Heat Capacity, J/kg-K 420
470
Thermal Conductivity, W/m-K 9.8
39
Thermal Expansion, µm/m-K 12
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
7.4
Electrical Conductivity: Equal Weight (Specific), % IACS 1.4
8.5

Otherwise Unclassified Properties

Base Metal Price, % relative 70
3.0
Density, g/cm3 9.0
7.8
Embodied Carbon, kg CO2/kg material 12
1.6
Embodied Energy, MJ/kg 170
21
Embodied Water, L/kg 300
53

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 320
110 to 200
Resilience: Unit (Modulus of Resilience), kJ/m3 280
380 to 1630
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 22
24
Strength to Weight: Axial, points 24
25 to 34
Strength to Weight: Bending, points 21
22 to 28
Thermal Diffusivity, mm2/s 2.6
11
Thermal Shock Resistance, points 21
21 to 28

Alloy Composition

Carbon (C), % 0 to 0.010
0.39 to 0.45
Chromium (Cr), % 19 to 23
1.2 to 1.5
Iron (Fe), % 0 to 5.0
96.2 to 97.5
Manganese (Mn), % 0 to 0.75
0.4 to 0.7
Molybdenum (Mo), % 15 to 17
0.5 to 0.7
Nickel (Ni), % 49.5 to 63
0
Phosphorus (P), % 0 to 0.040
0 to 0.025
Silicon (Si), % 0 to 0.080
0 to 0.4
Sulfur (S), % 0 to 0.020
0 to 0.035
Titanium (Ti), % 0.020 to 0.25
0
Tungsten (W), % 3.0 to 4.4
0