MakeItFrom.com
Menu (ESC)

Nickel 686 vs. S31060 Stainless Steel

Nickel 686 belongs to the nickel alloys classification, while S31060 stainless steel belongs to the iron alloys. They have a modest 35% of their average alloy composition in common, which, by itself, doesn't mean much. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is nickel 686 and the bottom bar is S31060 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 220
200
Elongation at Break, % 51
46
Fatigue Strength, MPa 410
290
Poisson's Ratio 0.29
0.27
Shear Modulus, GPa 77
78
Shear Strength, MPa 560
480
Tensile Strength: Ultimate (UTS), MPa 780
680
Tensile Strength: Yield (Proof), MPa 350
310

Thermal Properties

Latent Heat of Fusion, J/g 320
290
Maximum Temperature: Mechanical, °C 980
1080
Melting Completion (Liquidus), °C 1380
1420
Melting Onset (Solidus), °C 1340
1370
Specific Heat Capacity, J/kg-K 420
480
Thermal Conductivity, W/m-K 9.8
15
Thermal Expansion, µm/m-K 12
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 1.4
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 70
18
Density, g/cm3 9.0
7.8
Embodied Carbon, kg CO2/kg material 12
3.4
Embodied Energy, MJ/kg 170
48
Embodied Water, L/kg 300
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 320
260
Resilience: Unit (Modulus of Resilience), kJ/m3 280
250
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 22
25
Strength to Weight: Axial, points 24
24
Strength to Weight: Bending, points 21
22
Thermal Diffusivity, mm2/s 2.6
4.0
Thermal Shock Resistance, points 21
15

Alloy Composition

Boron (B), % 0
0.0010 to 0.010
Carbon (C), % 0 to 0.010
0.050 to 0.1
Cerium (Ce), % 0
0 to 0.070
Chromium (Cr), % 19 to 23
22 to 24
Iron (Fe), % 0 to 5.0
61.4 to 67.8
Lanthanum (La), % 0
0 to 0.070
Manganese (Mn), % 0 to 0.75
0 to 1.0
Molybdenum (Mo), % 15 to 17
0
Nickel (Ni), % 49.5 to 63
10 to 12.5
Nitrogen (N), % 0
0.18 to 0.25
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 0.080
0 to 0.5
Sulfur (S), % 0 to 0.020
0 to 0.030
Titanium (Ti), % 0.020 to 0.25
0
Tungsten (W), % 3.0 to 4.4
0