MakeItFrom.com
Menu (ESC)

Nickel 689 vs. 7049A Aluminum

Nickel 689 belongs to the nickel alloys classification, while 7049A aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is nickel 689 and the bottom bar is 7049A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
71
Elongation at Break, % 23
5.0 to 5.7
Fatigue Strength, MPa 420
180
Poisson's Ratio 0.29
0.32
Shear Modulus, GPa 80
27
Shear Strength, MPa 790
340 to 350
Tensile Strength: Ultimate (UTS), MPa 1250
580 to 590
Tensile Strength: Yield (Proof), MPa 690
500 to 530

Thermal Properties

Latent Heat of Fusion, J/g 330
370
Maximum Temperature: Mechanical, °C 990
200
Melting Completion (Liquidus), °C 1440
640
Melting Onset (Solidus), °C 1390
430
Specific Heat Capacity, J/kg-K 450
850
Thermal Expansion, µm/m-K 12
24

Otherwise Unclassified Properties

Base Metal Price, % relative 70
10
Density, g/cm3 8.5
3.1
Embodied Carbon, kg CO2/kg material 11
8.2
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 330
1100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 240
28 to 32
Resilience: Unit (Modulus of Resilience), kJ/m3 1170
1800 to 1990
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 23
44
Strength to Weight: Axial, points 41
52 to 53
Strength to Weight: Bending, points 30
50 to 51
Thermal Shock Resistance, points 35
25

Alloy Composition

Aluminum (Al), % 0.75 to 1.3
84.6 to 89.5
Boron (B), % 0.0030 to 0.010
0
Carbon (C), % 0.1 to 0.2
0
Chromium (Cr), % 18 to 20
0.050 to 0.25
Cobalt (Co), % 9.0 to 11
0
Copper (Cu), % 0
1.2 to 1.9
Iron (Fe), % 0 to 5.0
0 to 0.5
Magnesium (Mg), % 0
2.1 to 3.1
Manganese (Mn), % 0 to 0.5
0 to 0.5
Molybdenum (Mo), % 9.0 to 10.5
0
Nickel (Ni), % 48.3 to 60.9
0
Phosphorus (P), % 0 to 0.015
0
Silicon (Si), % 0 to 0.5
0 to 0.4
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 2.3 to 2.8
0 to 0.25
Zinc (Zn), % 0
7.2 to 8.4
Zirconium (Zr), % 0
0 to 0.25
Residuals, % 0
0 to 0.15