MakeItFrom.com
Menu (ESC)

Nickel 689 vs. 8176 Aluminum

Nickel 689 belongs to the nickel alloys classification, while 8176 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is nickel 689 and the bottom bar is 8176 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
69
Elongation at Break, % 23
15
Fatigue Strength, MPa 420
59
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 80
26
Shear Strength, MPa 790
70
Tensile Strength: Ultimate (UTS), MPa 1250
160
Tensile Strength: Yield (Proof), MPa 690
95

Thermal Properties

Latent Heat of Fusion, J/g 330
400
Maximum Temperature: Mechanical, °C 990
170
Melting Completion (Liquidus), °C 1440
660
Melting Onset (Solidus), °C 1390
650
Specific Heat Capacity, J/kg-K 450
900
Thermal Expansion, µm/m-K 12
24

Otherwise Unclassified Properties

Base Metal Price, % relative 70
9.5
Density, g/cm3 8.5
2.7
Embodied Carbon, kg CO2/kg material 11
8.2
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 330
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 240
21
Resilience: Unit (Modulus of Resilience), kJ/m3 1170
66
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 23
50
Strength to Weight: Axial, points 41
16
Strength to Weight: Bending, points 30
24
Thermal Shock Resistance, points 35
7.0

Alloy Composition

Aluminum (Al), % 0.75 to 1.3
98.6 to 99.6
Boron (B), % 0.0030 to 0.010
0
Carbon (C), % 0.1 to 0.2
0
Chromium (Cr), % 18 to 20
0
Cobalt (Co), % 9.0 to 11
0
Gallium (Ga), % 0
0 to 0.030
Iron (Fe), % 0 to 5.0
0.4 to 1.0
Manganese (Mn), % 0 to 0.5
0
Molybdenum (Mo), % 9.0 to 10.5
0
Nickel (Ni), % 48.3 to 60.9
0
Phosphorus (P), % 0 to 0.015
0
Silicon (Si), % 0 to 0.5
0.030 to 0.15
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 2.3 to 2.8
0
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15