MakeItFrom.com
Menu (ESC)

Nickel 689 vs. EN AC-51100 Aluminum

Nickel 689 belongs to the nickel alloys classification, while EN AC-51100 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is nickel 689 and the bottom bar is EN AC-51100 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 350
57
Elastic (Young's, Tensile) Modulus, GPa 210
68
Elongation at Break, % 23
4.5
Fatigue Strength, MPa 420
58
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 80
26
Tensile Strength: Ultimate (UTS), MPa 1250
160
Tensile Strength: Yield (Proof), MPa 690
80

Thermal Properties

Latent Heat of Fusion, J/g 330
400
Maximum Temperature: Mechanical, °C 990
170
Melting Completion (Liquidus), °C 1440
640
Melting Onset (Solidus), °C 1390
620
Specific Heat Capacity, J/kg-K 450
900
Thermal Expansion, µm/m-K 12
23

Otherwise Unclassified Properties

Base Metal Price, % relative 70
9.5
Density, g/cm3 8.5
2.7
Embodied Carbon, kg CO2/kg material 11
8.7
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 330
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 240
6.0
Resilience: Unit (Modulus of Resilience), kJ/m3 1170
47
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 23
51
Strength to Weight: Axial, points 41
17
Strength to Weight: Bending, points 30
25
Thermal Shock Resistance, points 35
7.3

Alloy Composition

Aluminum (Al), % 0.75 to 1.3
94.5 to 97.5
Boron (B), % 0.0030 to 0.010
0
Carbon (C), % 0.1 to 0.2
0
Chromium (Cr), % 18 to 20
0
Cobalt (Co), % 9.0 to 11
0
Copper (Cu), % 0
0 to 0.050
Iron (Fe), % 0 to 5.0
0 to 0.55
Magnesium (Mg), % 0
2.5 to 3.5
Manganese (Mn), % 0 to 0.5
0 to 0.45
Molybdenum (Mo), % 9.0 to 10.5
0
Nickel (Ni), % 48.3 to 60.9
0
Phosphorus (P), % 0 to 0.015
0
Silicon (Si), % 0 to 0.5
0 to 0.55
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 2.3 to 2.8
0 to 0.2
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15