MakeItFrom.com
Menu (ESC)

Nickel 689 vs. C71520 Copper-nickel

Nickel 689 belongs to the nickel alloys classification, while C71520 copper-nickel belongs to the copper alloys. They have a modest 31% of their average alloy composition in common, which, by itself, doesn't mean much. There are 25 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is nickel 689 and the bottom bar is C71520 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
140
Elongation at Break, % 23
10 to 45
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 80
51
Shear Strength, MPa 790
250 to 340
Tensile Strength: Ultimate (UTS), MPa 1250
370 to 570
Tensile Strength: Yield (Proof), MPa 690
140 to 430

Thermal Properties

Latent Heat of Fusion, J/g 330
230
Maximum Temperature: Mechanical, °C 990
260
Melting Completion (Liquidus), °C 1440
1170
Melting Onset (Solidus), °C 1390
1120
Specific Heat Capacity, J/kg-K 450
400
Thermal Expansion, µm/m-K 12
15

Otherwise Unclassified Properties

Base Metal Price, % relative 70
40
Density, g/cm3 8.5
8.9
Embodied Carbon, kg CO2/kg material 11
5.0
Embodied Energy, MJ/kg 150
73
Embodied Water, L/kg 330
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 240
54 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 1170
67 to 680
Stiffness to Weight: Axial, points 14
8.6
Stiffness to Weight: Bending, points 23
19
Strength to Weight: Axial, points 41
12 to 18
Strength to Weight: Bending, points 30
13 to 17
Thermal Shock Resistance, points 35
12 to 19

Alloy Composition

Aluminum (Al), % 0.75 to 1.3
0
Boron (B), % 0.0030 to 0.010
0
Carbon (C), % 0.1 to 0.2
0 to 0.050
Chromium (Cr), % 18 to 20
0
Cobalt (Co), % 9.0 to 11
0
Copper (Cu), % 0
65 to 71.6
Iron (Fe), % 0 to 5.0
0.4 to 1.0
Lead (Pb), % 0
0 to 0.020
Manganese (Mn), % 0 to 0.5
0 to 1.0
Molybdenum (Mo), % 9.0 to 10.5
0
Nickel (Ni), % 48.3 to 60.9
28 to 33
Phosphorus (P), % 0 to 0.015
0 to 0.2
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.015
0 to 0.020
Titanium (Ti), % 2.3 to 2.8
0
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.5