MakeItFrom.com
Menu (ESC)

Nickel 689 vs. C82000 Copper

Nickel 689 belongs to the nickel alloys classification, while C82000 copper belongs to the copper alloys. There are 24 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is nickel 689 and the bottom bar is C82000 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
120
Elongation at Break, % 23
8.0 to 20
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 80
45
Tensile Strength: Ultimate (UTS), MPa 1250
350 to 690
Tensile Strength: Yield (Proof), MPa 690
140 to 520

Thermal Properties

Latent Heat of Fusion, J/g 330
220
Maximum Temperature: Mechanical, °C 990
220
Melting Completion (Liquidus), °C 1440
1090
Melting Onset (Solidus), °C 1390
970
Specific Heat Capacity, J/kg-K 450
390
Thermal Expansion, µm/m-K 12
17

Otherwise Unclassified Properties

Base Metal Price, % relative 70
60
Density, g/cm3 8.5
8.9
Embodied Carbon, kg CO2/kg material 11
5.0
Embodied Energy, MJ/kg 150
77
Embodied Water, L/kg 330
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 240
51 to 55
Resilience: Unit (Modulus of Resilience), kJ/m3 1170
80 to 1120
Stiffness to Weight: Axial, points 14
7.5
Stiffness to Weight: Bending, points 23
18
Strength to Weight: Axial, points 41
11 to 22
Strength to Weight: Bending, points 30
12 to 20
Thermal Shock Resistance, points 35
12 to 24

Alloy Composition

Aluminum (Al), % 0.75 to 1.3
0 to 0.1
Beryllium (Be), % 0
0.45 to 0.8
Boron (B), % 0.0030 to 0.010
0
Carbon (C), % 0.1 to 0.2
0
Chromium (Cr), % 18 to 20
0 to 0.1
Cobalt (Co), % 9.0 to 11
2.2 to 2.7
Copper (Cu), % 0
95.2 to 97.4
Iron (Fe), % 0 to 5.0
0 to 0.1
Lead (Pb), % 0
0 to 0.020
Manganese (Mn), % 0 to 0.5
0
Molybdenum (Mo), % 9.0 to 10.5
0
Nickel (Ni), % 48.3 to 60.9
0 to 0.2
Phosphorus (P), % 0 to 0.015
0
Silicon (Si), % 0 to 0.5
0 to 0.15
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0 to 0.1
Titanium (Ti), % 2.3 to 2.8
0
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.5