MakeItFrom.com
Menu (ESC)

Nickel 689 vs. S41003 Stainless Steel

Nickel 689 belongs to the nickel alloys classification, while S41003 stainless steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is nickel 689 and the bottom bar is S41003 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 350
200
Elastic (Young's, Tensile) Modulus, GPa 210
190
Elongation at Break, % 23
21
Fatigue Strength, MPa 420
200
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 80
76
Shear Strength, MPa 790
320
Tensile Strength: Ultimate (UTS), MPa 1250
520
Tensile Strength: Yield (Proof), MPa 690
310

Thermal Properties

Latent Heat of Fusion, J/g 330
270
Maximum Temperature: Mechanical, °C 990
720
Melting Completion (Liquidus), °C 1440
1440
Melting Onset (Solidus), °C 1390
1400
Specific Heat Capacity, J/kg-K 450
480
Thermal Expansion, µm/m-K 12
10

Otherwise Unclassified Properties

Base Metal Price, % relative 70
7.0
Density, g/cm3 8.5
7.8
Embodied Carbon, kg CO2/kg material 11
1.9
Embodied Energy, MJ/kg 150
27
Embodied Water, L/kg 330
97

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 240
92
Resilience: Unit (Modulus of Resilience), kJ/m3 1170
240
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 23
25
Strength to Weight: Axial, points 41
19
Strength to Weight: Bending, points 30
18
Thermal Shock Resistance, points 35
19

Alloy Composition

Aluminum (Al), % 0.75 to 1.3
0
Boron (B), % 0.0030 to 0.010
0
Carbon (C), % 0.1 to 0.2
0 to 0.030
Chromium (Cr), % 18 to 20
10.5 to 12.5
Cobalt (Co), % 9.0 to 11
0
Iron (Fe), % 0 to 5.0
83.4 to 89.5
Manganese (Mn), % 0 to 0.5
0 to 1.5
Molybdenum (Mo), % 9.0 to 10.5
0
Nickel (Ni), % 48.3 to 60.9
0 to 1.5
Nitrogen (N), % 0
0 to 0.030
Phosphorus (P), % 0 to 0.015
0 to 0.040
Silicon (Si), % 0 to 0.5
0 to 1.0
Sulfur (S), % 0 to 0.015
0 to 0.030
Titanium (Ti), % 2.3 to 2.8
0