MakeItFrom.com
Menu (ESC)

Nickel 690 vs. 2017A Aluminum

Nickel 690 belongs to the nickel alloys classification, while 2017A aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is nickel 690 and the bottom bar is 2017A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
71
Elongation at Break, % 3.4 to 34
2.2 to 14
Fatigue Strength, MPa 180 to 300
92 to 130
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 79
27
Shear Strength, MPa 420 to 570
120 to 270
Tensile Strength: Ultimate (UTS), MPa 640 to 990
200 to 460
Tensile Strength: Yield (Proof), MPa 250 to 760
110 to 290

Thermal Properties

Latent Heat of Fusion, J/g 320
390
Maximum Temperature: Mechanical, °C 1010
220
Melting Completion (Liquidus), °C 1380
650
Melting Onset (Solidus), °C 1340
510
Specific Heat Capacity, J/kg-K 470
880
Thermal Conductivity, W/m-K 14
150
Thermal Expansion, µm/m-K 14
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
34
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
100

Otherwise Unclassified Properties

Base Metal Price, % relative 50
11
Density, g/cm3 8.3
3.0
Embodied Carbon, kg CO2/kg material 8.2
8.2
Embodied Energy, MJ/kg 120
150
Embodied Water, L/kg 290
1140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 31 to 170
6.7 to 53
Resilience: Unit (Modulus of Resilience), kJ/m3 160 to 1440
90 to 570
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
46
Strength to Weight: Axial, points 21 to 33
19 to 42
Strength to Weight: Bending, points 20 to 27
26 to 44
Thermal Diffusivity, mm2/s 3.5
56
Thermal Shock Resistance, points 16 to 25
8.9 to 20

Alloy Composition

Aluminum (Al), % 0
91.3 to 95.5
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 27 to 31
0 to 0.1
Copper (Cu), % 0 to 0.5
3.5 to 4.5
Iron (Fe), % 7.0 to 11
0 to 0.7
Magnesium (Mg), % 0
0.4 to 1.0
Manganese (Mn), % 0 to 0.5
0.4 to 1.0
Nickel (Ni), % 58 to 66
0
Silicon (Si), % 0 to 0.5
0.2 to 0.8
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0
0 to 0.25
Zirconium (Zr), % 0
0 to 0.25
Residuals, % 0
0 to 0.15

Comparable Variants