MakeItFrom.com
Menu (ESC)

Nickel 690 vs. 5454 Aluminum

Nickel 690 belongs to the nickel alloys classification, while 5454 aluminum belongs to the aluminum alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is nickel 690 and the bottom bar is 5454 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 90
61 to 93
Elastic (Young's, Tensile) Modulus, GPa 200
69
Elongation at Break, % 3.4 to 34
2.3 to 18
Fatigue Strength, MPa 180 to 300
83 to 160
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 79
26
Shear Strength, MPa 420 to 570
140 to 200
Tensile Strength: Ultimate (UTS), MPa 640 to 990
230 to 350
Tensile Strength: Yield (Proof), MPa 250 to 760
97 to 290

Thermal Properties

Latent Heat of Fusion, J/g 320
400
Maximum Temperature: Mechanical, °C 1010
190
Melting Completion (Liquidus), °C 1380
650
Melting Onset (Solidus), °C 1340
600
Specific Heat Capacity, J/kg-K 470
900
Thermal Conductivity, W/m-K 14
130
Thermal Expansion, µm/m-K 14
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
34
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
110

Otherwise Unclassified Properties

Base Metal Price, % relative 50
9.5
Density, g/cm3 8.3
2.7
Embodied Carbon, kg CO2/kg material 8.2
8.6
Embodied Energy, MJ/kg 120
150
Embodied Water, L/kg 290
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 31 to 170
6.3 to 34
Resilience: Unit (Modulus of Resilience), kJ/m3 160 to 1440
68 to 590
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
50
Strength to Weight: Axial, points 21 to 33
23 to 36
Strength to Weight: Bending, points 20 to 27
30 to 41
Thermal Diffusivity, mm2/s 3.5
55
Thermal Shock Resistance, points 16 to 25
10 to 16

Alloy Composition

Aluminum (Al), % 0
94.5 to 97.1
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 27 to 31
0.050 to 0.2
Copper (Cu), % 0 to 0.5
0 to 0.1
Iron (Fe), % 7.0 to 11
0 to 0.4
Magnesium (Mg), % 0
2.4 to 3.0
Manganese (Mn), % 0 to 0.5
0.5 to 1.0
Nickel (Ni), % 58 to 66
0
Silicon (Si), % 0 to 0.5
0 to 0.25
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15

Comparable Variants