MakeItFrom.com
Menu (ESC)

Nickel 690 vs. 6070 Aluminum

Nickel 690 belongs to the nickel alloys classification, while 6070 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is nickel 690 and the bottom bar is 6070 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
70
Elongation at Break, % 3.4 to 34
5.6 to 8.6
Fatigue Strength, MPa 180 to 300
95 to 130
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 79
26
Shear Strength, MPa 420 to 570
220 to 240
Tensile Strength: Ultimate (UTS), MPa 640 to 990
370 to 380
Tensile Strength: Yield (Proof), MPa 250 to 760
350

Thermal Properties

Latent Heat of Fusion, J/g 320
410
Maximum Temperature: Mechanical, °C 1010
160
Melting Completion (Liquidus), °C 1380
650
Melting Onset (Solidus), °C 1340
570
Specific Heat Capacity, J/kg-K 470
900
Thermal Conductivity, W/m-K 14
160
Thermal Expansion, µm/m-K 14
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
41
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
140

Otherwise Unclassified Properties

Base Metal Price, % relative 50
9.5
Density, g/cm3 8.3
2.7
Embodied Carbon, kg CO2/kg material 8.2
8.3
Embodied Energy, MJ/kg 120
150
Embodied Water, L/kg 290
1170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 31 to 170
20 to 32
Resilience: Unit (Modulus of Resilience), kJ/m3 160 to 1440
880 to 900
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
50
Strength to Weight: Axial, points 21 to 33
38
Strength to Weight: Bending, points 20 to 27
42 to 43
Thermal Diffusivity, mm2/s 3.5
65
Thermal Shock Resistance, points 16 to 25
16 to 17

Alloy Composition

Aluminum (Al), % 0
94.6 to 98
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 27 to 31
0 to 0.1
Copper (Cu), % 0 to 0.5
0.15 to 0.4
Iron (Fe), % 7.0 to 11
0 to 0.5
Magnesium (Mg), % 0
0.5 to 1.2
Manganese (Mn), % 0 to 0.5
0.4 to 1.0
Nickel (Ni), % 58 to 66
0
Silicon (Si), % 0 to 0.5
1.0 to 1.7
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0
0 to 0.15
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15