MakeItFrom.com
Menu (ESC)

Nickel 690 vs. 7050 Aluminum

Nickel 690 belongs to the nickel alloys classification, while 7050 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is nickel 690 and the bottom bar is 7050 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
70
Elongation at Break, % 3.4 to 34
2.2 to 12
Fatigue Strength, MPa 180 to 300
130 to 210
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 79
26
Shear Strength, MPa 420 to 570
280 to 330
Tensile Strength: Ultimate (UTS), MPa 640 to 990
490 to 570
Tensile Strength: Yield (Proof), MPa 250 to 760
390 to 500

Thermal Properties

Latent Heat of Fusion, J/g 320
370
Maximum Temperature: Mechanical, °C 1010
190
Melting Completion (Liquidus), °C 1380
630
Melting Onset (Solidus), °C 1340
490
Specific Heat Capacity, J/kg-K 470
860
Thermal Conductivity, W/m-K 14
140
Thermal Expansion, µm/m-K 14
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
35
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
100

Otherwise Unclassified Properties

Base Metal Price, % relative 50
10
Density, g/cm3 8.3
3.1
Embodied Carbon, kg CO2/kg material 8.2
8.2
Embodied Energy, MJ/kg 120
150
Embodied Water, L/kg 290
1120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 31 to 170
10 to 55
Resilience: Unit (Modulus of Resilience), kJ/m3 160 to 1440
1110 to 1760
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
45
Strength to Weight: Axial, points 21 to 33
45 to 51
Strength to Weight: Bending, points 20 to 27
45 to 50
Thermal Diffusivity, mm2/s 3.5
54
Thermal Shock Resistance, points 16 to 25
21 to 25

Alloy Composition

Aluminum (Al), % 0
87.3 to 92.1
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 27 to 31
0 to 0.040
Copper (Cu), % 0 to 0.5
2.0 to 2.6
Iron (Fe), % 7.0 to 11
0 to 0.15
Magnesium (Mg), % 0
1.9 to 2.6
Manganese (Mn), % 0 to 0.5
0 to 0.1
Nickel (Ni), % 58 to 66
0
Silicon (Si), % 0 to 0.5
0 to 0.12
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0
0 to 0.060
Zinc (Zn), % 0
5.7 to 6.7
Zirconium (Zr), % 0
0.080 to 0.15
Residuals, % 0
0 to 0.15