MakeItFrom.com
Menu (ESC)

Nickel 690 vs. 8011A Aluminum

Nickel 690 belongs to the nickel alloys classification, while 8011A aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is nickel 690 and the bottom bar is 8011A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 90
25 to 50
Elastic (Young's, Tensile) Modulus, GPa 200
69
Elongation at Break, % 3.4 to 34
1.7 to 28
Fatigue Strength, MPa 180 to 300
33 to 76
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 79
26
Tensile Strength: Ultimate (UTS), MPa 640 to 990
100 to 180
Tensile Strength: Yield (Proof), MPa 250 to 760
34 to 170

Thermal Properties

Latent Heat of Fusion, J/g 320
400
Maximum Temperature: Mechanical, °C 1010
170
Melting Completion (Liquidus), °C 1380
650
Melting Onset (Solidus), °C 1340
630
Specific Heat Capacity, J/kg-K 470
900
Thermal Conductivity, W/m-K 14
210
Thermal Expansion, µm/m-K 14
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
56
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
180

Otherwise Unclassified Properties

Base Metal Price, % relative 50
9.0
Density, g/cm3 8.3
2.7
Embodied Carbon, kg CO2/kg material 8.2
8.2
Embodied Energy, MJ/kg 120
150
Embodied Water, L/kg 290
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 31 to 170
3.0 to 22
Resilience: Unit (Modulus of Resilience), kJ/m3 160 to 1440
8.2 to 200
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
50
Strength to Weight: Axial, points 21 to 33
11 to 18
Strength to Weight: Bending, points 20 to 27
18 to 26
Thermal Diffusivity, mm2/s 3.5
86
Thermal Shock Resistance, points 16 to 25
4.6 to 8.1

Alloy Composition

Aluminum (Al), % 0
97.5 to 99.1
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 27 to 31
0 to 0.1
Copper (Cu), % 0 to 0.5
0 to 0.1
Iron (Fe), % 7.0 to 11
0.5 to 1.0
Magnesium (Mg), % 0
0 to 0.1
Manganese (Mn), % 0 to 0.5
0 to 0.1
Nickel (Ni), % 58 to 66
0
Silicon (Si), % 0 to 0.5
0.4 to 0.8
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0
0 to 0.050
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15

Comparable Variants