MakeItFrom.com
Menu (ESC)

Nickel 690 vs. A384.0 Aluminum

Nickel 690 belongs to the nickel alloys classification, while A384.0 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is nickel 690 and the bottom bar is A384.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
74
Elongation at Break, % 3.4 to 34
2.5
Fatigue Strength, MPa 180 to 300
140
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 79
28
Shear Strength, MPa 420 to 570
200
Tensile Strength: Ultimate (UTS), MPa 640 to 990
330
Tensile Strength: Yield (Proof), MPa 250 to 760
170

Thermal Properties

Latent Heat of Fusion, J/g 320
550
Maximum Temperature: Mechanical, °C 1010
170
Melting Completion (Liquidus), °C 1380
610
Melting Onset (Solidus), °C 1340
510
Specific Heat Capacity, J/kg-K 470
880
Thermal Conductivity, W/m-K 14
96
Thermal Expansion, µm/m-K 14
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
23
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
73

Otherwise Unclassified Properties

Base Metal Price, % relative 50
11
Density, g/cm3 8.3
2.8
Embodied Carbon, kg CO2/kg material 8.2
7.5
Embodied Energy, MJ/kg 120
140
Embodied Water, L/kg 290
1010

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 31 to 170
6.9
Resilience: Unit (Modulus of Resilience), kJ/m3 160 to 1440
180
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 24
50
Strength to Weight: Axial, points 21 to 33
32
Strength to Weight: Bending, points 20 to 27
38
Thermal Diffusivity, mm2/s 3.5
39
Thermal Shock Resistance, points 16 to 25
15

Alloy Composition

Aluminum (Al), % 0
79.3 to 86.5
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 27 to 31
0
Copper (Cu), % 0 to 0.5
3.0 to 4.5
Iron (Fe), % 7.0 to 11
0 to 1.3
Magnesium (Mg), % 0
0 to 0.1
Manganese (Mn), % 0 to 0.5
0 to 0.5
Nickel (Ni), % 58 to 66
0 to 0.5
Silicon (Si), % 0 to 0.5
10.5 to 12
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0 to 0.35
Zinc (Zn), % 0
0 to 1.0
Residuals, % 0
0 to 0.5