MakeItFrom.com
Menu (ESC)

Nickel 690 vs. EN 1.6220 Steel

Nickel 690 belongs to the nickel alloys classification, while EN 1.6220 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is nickel 690 and the bottom bar is EN 1.6220 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 90
170
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 3.4 to 34
23 to 25
Fatigue Strength, MPa 180 to 300
240 to 250
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 79
73
Tensile Strength: Ultimate (UTS), MPa 640 to 990
550 to 580
Tensile Strength: Yield (Proof), MPa 250 to 760
340

Thermal Properties

Latent Heat of Fusion, J/g 320
250
Maximum Temperature: Mechanical, °C 1010
400
Melting Completion (Liquidus), °C 1380
1460
Melting Onset (Solidus), °C 1340
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 14
52
Thermal Expansion, µm/m-K 14
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 50
2.1
Density, g/cm3 8.3
7.8
Embodied Carbon, kg CO2/kg material 8.2
1.5
Embodied Energy, MJ/kg 120
19
Embodied Water, L/kg 290
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 31 to 170
110 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 160 to 1440
300 to 310
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 21 to 33
19 to 20
Strength to Weight: Bending, points 20 to 27
19 to 20
Thermal Diffusivity, mm2/s 3.5
14
Thermal Shock Resistance, points 16 to 25
16 to 17

Alloy Composition

Carbon (C), % 0 to 0.050
0.17 to 0.23
Chromium (Cr), % 27 to 31
0
Copper (Cu), % 0 to 0.5
0
Iron (Fe), % 7.0 to 11
96.7 to 98.8
Manganese (Mn), % 0 to 0.5
1.0 to 1.6
Nickel (Ni), % 58 to 66
0 to 0.8
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.5
0 to 0.6
Sulfur (S), % 0 to 0.015
0 to 0.030