MakeItFrom.com
Menu (ESC)

Nickel 690 vs. EN AC-71100 Aluminum

Nickel 690 belongs to the nickel alloys classification, while EN AC-71100 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is nickel 690 and the bottom bar is EN AC-71100 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 90
110
Elastic (Young's, Tensile) Modulus, GPa 200
72
Elongation at Break, % 3.4 to 34
1.1
Fatigue Strength, MPa 180 to 300
150
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 79
27
Tensile Strength: Ultimate (UTS), MPa 640 to 990
260
Tensile Strength: Yield (Proof), MPa 250 to 760
230

Thermal Properties

Latent Heat of Fusion, J/g 320
490
Maximum Temperature: Mechanical, °C 1010
170
Melting Completion (Liquidus), °C 1380
580
Melting Onset (Solidus), °C 1340
520
Specific Heat Capacity, J/kg-K 470
860
Thermal Expansion, µm/m-K 14
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
32
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
97

Otherwise Unclassified Properties

Base Metal Price, % relative 50
9.5
Density, g/cm3 8.3
2.9
Embodied Carbon, kg CO2/kg material 8.2
7.4
Embodied Energy, MJ/kg 120
140
Embodied Water, L/kg 290
1010

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 31 to 170
2.8
Resilience: Unit (Modulus of Resilience), kJ/m3 160 to 1440
360
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
47
Strength to Weight: Axial, points 21 to 33
25
Strength to Weight: Bending, points 20 to 27
31
Thermal Shock Resistance, points 16 to 25
12

Alloy Composition

Aluminum (Al), % 0
78.7 to 83.3
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 27 to 31
0
Copper (Cu), % 0 to 0.5
0 to 0.1
Iron (Fe), % 7.0 to 11
0 to 0.3
Magnesium (Mg), % 0
0.2 to 0.5
Manganese (Mn), % 0 to 0.5
0 to 0.15
Nickel (Ni), % 58 to 66
0
Silicon (Si), % 0 to 0.5
7.5 to 9.5
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0
0 to 0.15
Zinc (Zn), % 0
9.0 to 10.5
Residuals, % 0
0 to 0.15