MakeItFrom.com
Menu (ESC)

Nickel 690 vs. CC483K Bronze

Nickel 690 belongs to the nickel alloys classification, while CC483K bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is nickel 690 and the bottom bar is CC483K bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 90
97
Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 3.4 to 34
6.4
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 79
40
Tensile Strength: Ultimate (UTS), MPa 640 to 990
310
Tensile Strength: Yield (Proof), MPa 250 to 760
170

Thermal Properties

Latent Heat of Fusion, J/g 320
190
Maximum Temperature: Mechanical, °C 1010
170
Melting Completion (Liquidus), °C 1380
990
Melting Onset (Solidus), °C 1340
870
Specific Heat Capacity, J/kg-K 470
370
Thermal Conductivity, W/m-K 14
68
Thermal Expansion, µm/m-K 14
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
10
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
10

Otherwise Unclassified Properties

Base Metal Price, % relative 50
36
Density, g/cm3 8.3
8.7
Embodied Carbon, kg CO2/kg material 8.2
3.8
Embodied Energy, MJ/kg 120
62
Embodied Water, L/kg 290
400

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 31 to 170
17
Resilience: Unit (Modulus of Resilience), kJ/m3 160 to 1440
130
Stiffness to Weight: Axial, points 13
6.9
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 21 to 33
9.9
Strength to Weight: Bending, points 20 to 27
12
Thermal Diffusivity, mm2/s 3.5
21
Thermal Shock Resistance, points 16 to 25
11

Alloy Composition

Aluminum (Al), % 0
0 to 0.010
Antimony (Sb), % 0
0 to 0.15
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 27 to 31
0
Copper (Cu), % 0 to 0.5
85 to 89
Iron (Fe), % 7.0 to 11
0 to 0.2
Lead (Pb), % 0
0 to 0.7
Manganese (Mn), % 0 to 0.5
0 to 0.2
Nickel (Ni), % 58 to 66
0 to 2.0
Phosphorus (P), % 0
0 to 0.6
Silicon (Si), % 0 to 0.5
0 to 0.010
Sulfur (S), % 0 to 0.015
0 to 0.050
Tin (Sn), % 0
10.5 to 13
Zinc (Zn), % 0
0 to 0.5