MakeItFrom.com
Menu (ESC)

Nickel 690 vs. C48600 Brass

Nickel 690 belongs to the nickel alloys classification, while C48600 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is nickel 690 and the bottom bar is C48600 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
100
Elongation at Break, % 3.4 to 34
20 to 25
Poisson's Ratio 0.28
0.31
Shear Modulus, GPa 79
39
Shear Strength, MPa 420 to 570
180 to 230
Tensile Strength: Ultimate (UTS), MPa 640 to 990
280 to 360
Tensile Strength: Yield (Proof), MPa 250 to 760
110 to 170

Thermal Properties

Latent Heat of Fusion, J/g 320
170
Maximum Temperature: Mechanical, °C 1010
120
Melting Completion (Liquidus), °C 1380
900
Melting Onset (Solidus), °C 1340
890
Specific Heat Capacity, J/kg-K 470
380
Thermal Conductivity, W/m-K 14
110
Thermal Expansion, µm/m-K 14
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
25
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
28

Otherwise Unclassified Properties

Base Metal Price, % relative 50
24
Density, g/cm3 8.3
8.1
Embodied Carbon, kg CO2/kg material 8.2
2.8
Embodied Energy, MJ/kg 120
47
Embodied Water, L/kg 290
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 31 to 170
55 to 59
Resilience: Unit (Modulus of Resilience), kJ/m3 160 to 1440
61 to 140
Stiffness to Weight: Axial, points 13
7.1
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 21 to 33
9.5 to 12
Strength to Weight: Bending, points 20 to 27
12 to 14
Thermal Diffusivity, mm2/s 3.5
36
Thermal Shock Resistance, points 16 to 25
9.3 to 12

Alloy Composition

Arsenic (As), % 0
0.020 to 0.25
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 27 to 31
0
Copper (Cu), % 0 to 0.5
59 to 62
Iron (Fe), % 7.0 to 11
0
Lead (Pb), % 0
1.0 to 2.5
Manganese (Mn), % 0 to 0.5
0
Nickel (Ni), % 58 to 66
0
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0.3 to 1.5
Zinc (Zn), % 0
33.4 to 39.7
Residuals, % 0
0 to 0.4