MakeItFrom.com
Menu (ESC)

Nickel 690 vs. C85800 Brass

Nickel 690 belongs to the nickel alloys classification, while C85800 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is nickel 690 and the bottom bar is C85800 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
100
Elongation at Break, % 3.4 to 34
15
Poisson's Ratio 0.28
0.31
Shear Modulus, GPa 79
40
Tensile Strength: Ultimate (UTS), MPa 640 to 990
380
Tensile Strength: Yield (Proof), MPa 250 to 760
210

Thermal Properties

Latent Heat of Fusion, J/g 320
170
Maximum Temperature: Mechanical, °C 1010
120
Melting Completion (Liquidus), °C 1380
900
Melting Onset (Solidus), °C 1340
870
Specific Heat Capacity, J/kg-K 470
380
Thermal Conductivity, W/m-K 14
84
Thermal Expansion, µm/m-K 14
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
20
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
22

Otherwise Unclassified Properties

Base Metal Price, % relative 50
24
Density, g/cm3 8.3
8.0
Embodied Carbon, kg CO2/kg material 8.2
2.8
Embodied Energy, MJ/kg 120
47
Embodied Water, L/kg 290
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 31 to 170
48
Resilience: Unit (Modulus of Resilience), kJ/m3 160 to 1440
210
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 24
20
Strength to Weight: Axial, points 21 to 33
13
Strength to Weight: Bending, points 20 to 27
15
Thermal Diffusivity, mm2/s 3.5
27
Thermal Shock Resistance, points 16 to 25
13

Alloy Composition

Aluminum (Al), % 0
0 to 0.55
Antimony (Sb), % 0
0 to 0.050
Arsenic (As), % 0
0 to 0.050
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 27 to 31
0
Copper (Cu), % 0 to 0.5
57 to 69
Iron (Fe), % 7.0 to 11
0 to 0.5
Lead (Pb), % 0
0 to 1.5
Manganese (Mn), % 0 to 0.5
0 to 0.25
Nickel (Ni), % 58 to 66
0 to 0.5
Phosphorus (P), % 0
0 to 0.010
Silicon (Si), % 0 to 0.5
0 to 0.25
Sulfur (S), % 0 to 0.015
0 to 0.050
Tin (Sn), % 0
0 to 1.5
Zinc (Zn), % 0
31 to 41
Residuals, % 0
0 to 1.3