MakeItFrom.com
Menu (ESC)

Nickel 690 vs. C87300 Bronze

Nickel 690 belongs to the nickel alloys classification, while C87300 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is nickel 690 and the bottom bar is C87300 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 3.4 to 34
22
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 79
43
Tensile Strength: Ultimate (UTS), MPa 640 to 990
350
Tensile Strength: Yield (Proof), MPa 250 to 760
140

Thermal Properties

Latent Heat of Fusion, J/g 320
280
Maximum Temperature: Mechanical, °C 1010
200
Melting Completion (Liquidus), °C 1380
970
Melting Onset (Solidus), °C 1340
820
Specific Heat Capacity, J/kg-K 470
410
Thermal Conductivity, W/m-K 14
28
Thermal Expansion, µm/m-K 14
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
6.1
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
6.4

Otherwise Unclassified Properties

Base Metal Price, % relative 50
29
Density, g/cm3 8.3
8.6
Embodied Carbon, kg CO2/kg material 8.2
2.7
Embodied Energy, MJ/kg 120
42
Embodied Water, L/kg 290
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 31 to 170
62
Resilience: Unit (Modulus of Resilience), kJ/m3 160 to 1440
86
Stiffness to Weight: Axial, points 13
7.5
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 21 to 33
11
Strength to Weight: Bending, points 20 to 27
13
Thermal Diffusivity, mm2/s 3.5
8.0
Thermal Shock Resistance, points 16 to 25
13

Alloy Composition

Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 27 to 31
0
Copper (Cu), % 0 to 0.5
94 to 95.7
Iron (Fe), % 7.0 to 11
0 to 0.2
Lead (Pb), % 0
0 to 0.2
Manganese (Mn), % 0 to 0.5
0.8 to 1.5
Nickel (Ni), % 58 to 66
0
Silicon (Si), % 0 to 0.5
3.5 to 5.0
Sulfur (S), % 0 to 0.015
0
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.5