MakeItFrom.com
Menu (ESC)

Nickel 690 vs. C91100 Bronze

Nickel 690 belongs to the nickel alloys classification, while C91100 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is nickel 690 and the bottom bar is C91100 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
100
Elongation at Break, % 3.4 to 34
2.0
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 79
39
Tensile Strength: Ultimate (UTS), MPa 640 to 990
240
Tensile Strength: Yield (Proof), MPa 250 to 760
170

Thermal Properties

Latent Heat of Fusion, J/g 320
180
Maximum Temperature: Mechanical, °C 1010
160
Melting Completion (Liquidus), °C 1380
950
Melting Onset (Solidus), °C 1340
820
Specific Heat Capacity, J/kg-K 470
360
Thermal Conductivity, W/m-K 14
63
Thermal Expansion, µm/m-K 14
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
8.0
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 50
38
Density, g/cm3 8.3
8.7
Embodied Carbon, kg CO2/kg material 8.2
4.2
Embodied Energy, MJ/kg 120
69
Embodied Water, L/kg 290
440

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 31 to 170
4.4
Resilience: Unit (Modulus of Resilience), kJ/m3 160 to 1440
140
Stiffness to Weight: Axial, points 13
6.7
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 21 to 33
7.7
Strength to Weight: Bending, points 20 to 27
9.9
Thermal Diffusivity, mm2/s 3.5
20
Thermal Shock Resistance, points 16 to 25
9.1

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.2
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 27 to 31
0
Copper (Cu), % 0 to 0.5
82 to 85
Iron (Fe), % 7.0 to 11
0 to 0.25
Lead (Pb), % 0
0 to 0.25
Manganese (Mn), % 0 to 0.5
0
Nickel (Ni), % 58 to 66
0 to 0.5
Phosphorus (P), % 0
0 to 1.0
Silicon (Si), % 0 to 0.5
0 to 0.0050
Sulfur (S), % 0 to 0.015
0 to 0.050
Tin (Sn), % 0
15 to 17
Zinc (Zn), % 0
0 to 0.25