MakeItFrom.com
Menu (ESC)

Nickel 718 vs. 7475 Aluminum

Nickel 718 belongs to the nickel alloys classification, while 7475 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is nickel 718 and the bottom bar is 7475 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
70
Elongation at Break, % 12 to 50
10 to 12
Fatigue Strength, MPa 460 to 760
190 to 210
Poisson's Ratio 0.29
0.32
Shear Modulus, GPa 75
26
Shear Strength, MPa 660 to 950
320 to 350
Tensile Strength: Ultimate (UTS), MPa 930 to 1530
530 to 590
Tensile Strength: Yield (Proof), MPa 510 to 1330
440 to 520

Thermal Properties

Latent Heat of Fusion, J/g 310
380
Maximum Temperature: Mechanical, °C 980
180
Melting Completion (Liquidus), °C 1340
640
Melting Onset (Solidus), °C 1260
480
Specific Heat Capacity, J/kg-K 450
870
Thermal Conductivity, W/m-K 11
140 to 160
Thermal Expansion, µm/m-K 13
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
33 to 42
Electrical Conductivity: Equal Weight (Specific), % IACS 1.5
98 to 120

Otherwise Unclassified Properties

Base Metal Price, % relative 75
10
Density, g/cm3 8.3
3.0
Embodied Carbon, kg CO2/kg material 13
8.2
Embodied Energy, MJ/kg 190
150
Embodied Water, L/kg 250
1130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140 to 390
53 to 68
Resilience: Unit (Modulus of Resilience), kJ/m3 660 to 4560
1390 to 1920
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 23
46
Strength to Weight: Axial, points 31 to 51
49 to 55
Strength to Weight: Bending, points 25 to 35
48 to 52
Thermal Diffusivity, mm2/s 3.0
53 to 63
Thermal Shock Resistance, points 27 to 44
23 to 26

Alloy Composition

Aluminum (Al), % 0.2 to 0.8
88.6 to 91.6
Boron (B), % 0 to 0.0060
0
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 17 to 21
0.18 to 0.25
Cobalt (Co), % 0 to 1.0
0
Copper (Cu), % 0 to 0.3
1.2 to 1.9
Iron (Fe), % 11.1 to 24.6
0 to 0.12
Magnesium (Mg), % 0
1.9 to 2.6
Manganese (Mn), % 0 to 0.35
0 to 0.060
Molybdenum (Mo), % 2.8 to 3.3
0
Nickel (Ni), % 50 to 55
0
Niobium (Nb), % 4.8 to 5.5
0
Phosphorus (P), % 0 to 0.015
0
Silicon (Si), % 0 to 0.35
0 to 0.1
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0.65 to 1.2
0 to 0.060
Zinc (Zn), % 0
5.1 to 6.2
Residuals, % 0
0 to 0.15