MakeItFrom.com
Menu (ESC)

Nickel 718 vs. A206.0 Aluminum

Nickel 718 belongs to the nickel alloys classification, while A206.0 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is nickel 718 and the bottom bar is A206.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
70
Elongation at Break, % 12 to 50
4.2 to 10
Fatigue Strength, MPa 460 to 760
90 to 180
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 75
26
Shear Strength, MPa 660 to 950
260
Tensile Strength: Ultimate (UTS), MPa 930 to 1530
390 to 440
Tensile Strength: Yield (Proof), MPa 510 to 1330
250 to 380

Thermal Properties

Latent Heat of Fusion, J/g 310
390
Maximum Temperature: Mechanical, °C 980
170
Melting Completion (Liquidus), °C 1340
670
Melting Onset (Solidus), °C 1260
550
Specific Heat Capacity, J/kg-K 450
880
Thermal Conductivity, W/m-K 11
130
Thermal Expansion, µm/m-K 13
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
30
Electrical Conductivity: Equal Weight (Specific), % IACS 1.5
90

Otherwise Unclassified Properties

Base Metal Price, % relative 75
11
Density, g/cm3 8.3
3.0
Embodied Carbon, kg CO2/kg material 13
8.0
Embodied Energy, MJ/kg 190
150
Embodied Water, L/kg 250
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140 to 390
16 to 37
Resilience: Unit (Modulus of Resilience), kJ/m3 660 to 4560
440 to 1000
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 23
46
Strength to Weight: Axial, points 31 to 51
36 to 41
Strength to Weight: Bending, points 25 to 35
39 to 43
Thermal Diffusivity, mm2/s 3.0
48
Thermal Shock Resistance, points 27 to 44
17 to 19

Alloy Composition

Aluminum (Al), % 0.2 to 0.8
93.9 to 95.7
Boron (B), % 0 to 0.0060
0
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 17 to 21
0
Cobalt (Co), % 0 to 1.0
0
Copper (Cu), % 0 to 0.3
4.2 to 5.0
Iron (Fe), % 11.1 to 24.6
0 to 0.1
Magnesium (Mg), % 0
0 to 0.15
Manganese (Mn), % 0 to 0.35
0 to 0.2
Molybdenum (Mo), % 2.8 to 3.3
0
Nickel (Ni), % 50 to 55
0 to 0.050
Niobium (Nb), % 4.8 to 5.5
0
Phosphorus (P), % 0 to 0.015
0
Silicon (Si), % 0 to 0.35
0 to 0.050
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0 to 0.050
Titanium (Ti), % 0.65 to 1.2
0.15 to 0.3
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15