MakeItFrom.com
Menu (ESC)

Nickel 718 vs. ACI-ASTM CA15M Steel

Nickel 718 belongs to the nickel alloys classification, while ACI-ASTM CA15M steel belongs to the iron alloys. They have a modest 32% of their average alloy composition in common, which, by itself, doesn't mean much. There are 30 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is nickel 718 and the bottom bar is ACI-ASTM CA15M steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 12 to 50
20
Fatigue Strength, MPa 460 to 760
330
Poisson's Ratio 0.29
0.28
Reduction in Area, % 34 to 64
34
Shear Modulus, GPa 75
76
Tensile Strength: Ultimate (UTS), MPa 930 to 1530
690
Tensile Strength: Yield (Proof), MPa 510 to 1330
510

Thermal Properties

Latent Heat of Fusion, J/g 310
270
Maximum Temperature: Mechanical, °C 980
760
Melting Completion (Liquidus), °C 1340
1450
Melting Onset (Solidus), °C 1260
1410
Specific Heat Capacity, J/kg-K 450
480
Thermal Conductivity, W/m-K 11
27
Thermal Expansion, µm/m-K 13
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
3.0
Electrical Conductivity: Equal Weight (Specific), % IACS 1.5
3.5

Otherwise Unclassified Properties

Base Metal Price, % relative 75
7.5
Density, g/cm3 8.3
7.8
Embodied Carbon, kg CO2/kg material 13
2.1
Embodied Energy, MJ/kg 190
29
Embodied Water, L/kg 250
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140 to 390
130
Resilience: Unit (Modulus of Resilience), kJ/m3 660 to 4560
670
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 23
25
Strength to Weight: Axial, points 31 to 51
25
Strength to Weight: Bending, points 25 to 35
22
Thermal Diffusivity, mm2/s 3.0
7.2
Thermal Shock Resistance, points 27 to 44
25

Alloy Composition

Aluminum (Al), % 0.2 to 0.8
0
Boron (B), % 0 to 0.0060
0
Carbon (C), % 0 to 0.080
0 to 0.15
Chromium (Cr), % 17 to 21
11.5 to 14
Cobalt (Co), % 0 to 1.0
0
Copper (Cu), % 0 to 0.3
0
Iron (Fe), % 11.1 to 24.6
82.1 to 88.4
Manganese (Mn), % 0 to 0.35
0 to 1.0
Molybdenum (Mo), % 2.8 to 3.3
0.15 to 1.0
Nickel (Ni), % 50 to 55
0 to 1.0
Niobium (Nb), % 4.8 to 5.5
0
Phosphorus (P), % 0 to 0.015
0 to 0.040
Silicon (Si), % 0 to 0.35
0 to 0.65
Sulfur (S), % 0 to 0.015
0 to 0.040
Titanium (Ti), % 0.65 to 1.2
0