MakeItFrom.com
Menu (ESC)

Nickel 718 vs. EN 1.1133 Steel

Nickel 718 belongs to the nickel alloys classification, while EN 1.1133 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is nickel 718 and the bottom bar is EN 1.1133 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 12 to 50
19 to 24
Fatigue Strength, MPa 460 to 760
230 to 310
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 75
73
Shear Strength, MPa 660 to 950
370 to 380
Tensile Strength: Ultimate (UTS), MPa 930 to 1530
580 to 620
Tensile Strength: Yield (Proof), MPa 510 to 1330
320 to 460

Thermal Properties

Latent Heat of Fusion, J/g 310
250
Maximum Temperature: Mechanical, °C 980
400
Melting Completion (Liquidus), °C 1340
1460
Melting Onset (Solidus), °C 1260
1420
Specific Heat Capacity, J/kg-K 450
470
Thermal Conductivity, W/m-K 11
49
Thermal Expansion, µm/m-K 13
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 1.5
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 75
2.1
Density, g/cm3 8.3
7.8
Embodied Carbon, kg CO2/kg material 13
1.5
Embodied Energy, MJ/kg 190
19
Embodied Water, L/kg 250
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140 to 390
110 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 660 to 4560
270 to 550
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 23
24
Strength to Weight: Axial, points 31 to 51
21 to 22
Strength to Weight: Bending, points 25 to 35
20 to 21
Thermal Diffusivity, mm2/s 3.0
13
Thermal Shock Resistance, points 27 to 44
18 to 19

Alloy Composition

Aluminum (Al), % 0.2 to 0.8
0
Boron (B), % 0 to 0.0060
0
Carbon (C), % 0 to 0.080
0.17 to 0.23
Chromium (Cr), % 17 to 21
0 to 0.4
Cobalt (Co), % 0 to 1.0
0
Copper (Cu), % 0 to 0.3
0
Iron (Fe), % 11.1 to 24.6
96.9 to 98.8
Manganese (Mn), % 0 to 0.35
1.0 to 1.5
Molybdenum (Mo), % 2.8 to 3.3
0 to 0.1
Nickel (Ni), % 50 to 55
0 to 0.4
Niobium (Nb), % 4.8 to 5.5
0
Phosphorus (P), % 0 to 0.015
0 to 0.035
Silicon (Si), % 0 to 0.35
0 to 0.4
Sulfur (S), % 0 to 0.015
0 to 0.035
Titanium (Ti), % 0.65 to 1.2
0