MakeItFrom.com
Menu (ESC)

Nickel 718 vs. EN 1.4557 Stainless Steel

Nickel 718 belongs to the nickel alloys classification, while EN 1.4557 stainless steel belongs to the iron alloys. They have 59% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is nickel 718 and the bottom bar is EN 1.4557 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 12 to 50
40
Fatigue Strength, MPa 460 to 760
260
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 75
80
Tensile Strength: Ultimate (UTS), MPa 930 to 1530
560
Tensile Strength: Yield (Proof), MPa 510 to 1330
300

Thermal Properties

Latent Heat of Fusion, J/g 310
300
Maximum Temperature: Mechanical, °C 980
1090
Melting Completion (Liquidus), °C 1340
1460
Melting Onset (Solidus), °C 1260
1420
Specific Heat Capacity, J/kg-K 450
460
Thermal Conductivity, W/m-K 11
15
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 1.5
2.2

Otherwise Unclassified Properties

Base Metal Price, % relative 75
29
Density, g/cm3 8.3
8.0
Embodied Carbon, kg CO2/kg material 13
5.6
Embodied Energy, MJ/kg 190
76
Embodied Water, L/kg 250
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140 to 390
190
Resilience: Unit (Modulus of Resilience), kJ/m3 660 to 4560
210
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 23
24
Strength to Weight: Axial, points 31 to 51
19
Strength to Weight: Bending, points 25 to 35
19
Thermal Diffusivity, mm2/s 3.0
4.0
Thermal Shock Resistance, points 27 to 44
12

Alloy Composition

Aluminum (Al), % 0.2 to 0.8
0
Boron (B), % 0 to 0.0060
0
Carbon (C), % 0 to 0.080
0 to 0.020
Chromium (Cr), % 17 to 21
19.5 to 20.5
Cobalt (Co), % 0 to 1.0
0
Copper (Cu), % 0 to 0.3
0.5 to 1.0
Iron (Fe), % 11.1 to 24.6
49.5 to 56.3
Manganese (Mn), % 0 to 0.35
0 to 1.2
Molybdenum (Mo), % 2.8 to 3.3
6.0 to 7.0
Nickel (Ni), % 50 to 55
17.5 to 19.5
Niobium (Nb), % 4.8 to 5.5
0
Nitrogen (N), % 0
0.18 to 0.24
Phosphorus (P), % 0 to 0.015
0 to 0.030
Silicon (Si), % 0 to 0.35
0 to 1.0
Sulfur (S), % 0 to 0.015
0 to 0.010
Titanium (Ti), % 0.65 to 1.2
0