MakeItFrom.com
Menu (ESC)

Nickel 718 vs. CC334G Bronze

Nickel 718 belongs to the nickel alloys classification, while CC334G bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is nickel 718 and the bottom bar is CC334G bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 12 to 50
5.6
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 75
45
Tensile Strength: Ultimate (UTS), MPa 930 to 1530
810
Tensile Strength: Yield (Proof), MPa 510 to 1330
410

Thermal Properties

Latent Heat of Fusion, J/g 310
240
Maximum Temperature: Mechanical, °C 980
240
Melting Completion (Liquidus), °C 1340
1080
Melting Onset (Solidus), °C 1260
1020
Specific Heat Capacity, J/kg-K 450
450
Thermal Conductivity, W/m-K 11
41
Thermal Expansion, µm/m-K 13
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 1.5
8.0

Otherwise Unclassified Properties

Base Metal Price, % relative 75
29
Density, g/cm3 8.3
8.2
Embodied Carbon, kg CO2/kg material 13
3.6
Embodied Energy, MJ/kg 190
59
Embodied Water, L/kg 250
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140 to 390
38
Resilience: Unit (Modulus of Resilience), kJ/m3 660 to 4560
710
Stiffness to Weight: Axial, points 13
8.1
Stiffness to Weight: Bending, points 23
20
Strength to Weight: Axial, points 31 to 51
28
Strength to Weight: Bending, points 25 to 35
24
Thermal Diffusivity, mm2/s 3.0
11
Thermal Shock Resistance, points 27 to 44
28

Alloy Composition

Aluminum (Al), % 0.2 to 0.8
10 to 12
Boron (B), % 0 to 0.0060
0
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 17 to 21
0
Cobalt (Co), % 0 to 1.0
0
Copper (Cu), % 0 to 0.3
72 to 84.5
Iron (Fe), % 11.1 to 24.6
3.0 to 7.0
Lead (Pb), % 0
0 to 0.050
Magnesium (Mg), % 0
0 to 0.050
Manganese (Mn), % 0 to 0.35
0 to 2.5
Molybdenum (Mo), % 2.8 to 3.3
0
Nickel (Ni), % 50 to 55
4.0 to 7.5
Niobium (Nb), % 4.8 to 5.5
0
Phosphorus (P), % 0 to 0.015
0
Silicon (Si), % 0 to 0.35
0 to 0.1
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0 to 0.2
Titanium (Ti), % 0.65 to 1.2
0
Zinc (Zn), % 0
0 to 0.5