MakeItFrom.com
Menu (ESC)

Nickel 718 vs. Titanium 15-3-3-3

Nickel 718 belongs to the nickel alloys classification, while titanium 15-3-3-3 belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is nickel 718 and the bottom bar is titanium 15-3-3-3.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
100
Elongation at Break, % 12 to 50
5.7 to 8.0
Fatigue Strength, MPa 460 to 760
610 to 710
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 75
39
Shear Strength, MPa 660 to 950
660 to 810
Tensile Strength: Ultimate (UTS), MPa 930 to 1530
1120 to 1390
Tensile Strength: Yield (Proof), MPa 510 to 1330
1100 to 1340

Thermal Properties

Latent Heat of Fusion, J/g 310
390
Maximum Temperature: Mechanical, °C 980
430
Melting Completion (Liquidus), °C 1340
1620
Melting Onset (Solidus), °C 1260
1560
Specific Heat Capacity, J/kg-K 450
520
Thermal Conductivity, W/m-K 11
8.1
Thermal Expansion, µm/m-K 13
9.8

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
1.2
Electrical Conductivity: Equal Weight (Specific), % IACS 1.5
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 75
40
Density, g/cm3 8.3
4.8
Embodied Carbon, kg CO2/kg material 13
59
Embodied Energy, MJ/kg 190
950
Embodied Water, L/kg 250
260

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140 to 390
78 to 89
Stiffness to Weight: Axial, points 13
12
Stiffness to Weight: Bending, points 23
32
Strength to Weight: Axial, points 31 to 51
64 to 80
Strength to Weight: Bending, points 25 to 35
50 to 57
Thermal Diffusivity, mm2/s 3.0
3.2
Thermal Shock Resistance, points 27 to 44
79 to 98

Alloy Composition

Aluminum (Al), % 0.2 to 0.8
2.5 to 3.5
Boron (B), % 0 to 0.0060
0
Carbon (C), % 0 to 0.080
0 to 0.050
Chromium (Cr), % 17 to 21
2.5 to 3.5
Cobalt (Co), % 0 to 1.0
0
Copper (Cu), % 0 to 0.3
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 11.1 to 24.6
0 to 0.25
Manganese (Mn), % 0 to 0.35
0
Molybdenum (Mo), % 2.8 to 3.3
0
Nickel (Ni), % 50 to 55
0
Niobium (Nb), % 4.8 to 5.5
0
Nitrogen (N), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.13
Phosphorus (P), % 0 to 0.015
0
Silicon (Si), % 0 to 0.35
0
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
2.5 to 3.5
Titanium (Ti), % 0.65 to 1.2
72.6 to 78.5
Vanadium (V), % 0
14 to 16
Residuals, % 0
0 to 0.4