MakeItFrom.com
Menu (ESC)

Nickel 718 vs. C16200 Copper

Nickel 718 belongs to the nickel alloys classification, while C16200 copper belongs to the copper alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is nickel 718 and the bottom bar is C16200 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 12 to 50
2.0 to 56
Fatigue Strength, MPa 460 to 760
100 to 210
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 75
43
Shear Strength, MPa 660 to 950
190 to 390
Tensile Strength: Ultimate (UTS), MPa 930 to 1530
240 to 550
Tensile Strength: Yield (Proof), MPa 510 to 1330
48 to 470

Thermal Properties

Latent Heat of Fusion, J/g 310
210
Maximum Temperature: Mechanical, °C 980
370
Melting Completion (Liquidus), °C 1340
1080
Melting Onset (Solidus), °C 1260
1030
Specific Heat Capacity, J/kg-K 450
380
Thermal Conductivity, W/m-K 11
360
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
90
Electrical Conductivity: Equal Weight (Specific), % IACS 1.5
90

Otherwise Unclassified Properties

Base Metal Price, % relative 75
30
Density, g/cm3 8.3
9.0
Embodied Carbon, kg CO2/kg material 13
2.6
Embodied Energy, MJ/kg 190
41
Embodied Water, L/kg 250
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140 to 390
10 to 99
Resilience: Unit (Modulus of Resilience), kJ/m3 660 to 4560
10 to 970
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 23
18
Strength to Weight: Axial, points 31 to 51
7.4 to 17
Strength to Weight: Bending, points 25 to 35
9.6 to 17
Thermal Diffusivity, mm2/s 3.0
100
Thermal Shock Resistance, points 27 to 44
8.7 to 20

Alloy Composition

Aluminum (Al), % 0.2 to 0.8
0
Boron (B), % 0 to 0.0060
0
Cadmium (Cd), % 0
0.7 to 1.2
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 17 to 21
0
Cobalt (Co), % 0 to 1.0
0
Copper (Cu), % 0 to 0.3
98.6 to 99.3
Iron (Fe), % 11.1 to 24.6
0 to 0.2
Manganese (Mn), % 0 to 0.35
0
Molybdenum (Mo), % 2.8 to 3.3
0
Nickel (Ni), % 50 to 55
0
Niobium (Nb), % 4.8 to 5.5
0
Phosphorus (P), % 0 to 0.015
0
Silicon (Si), % 0 to 0.35
0
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0.65 to 1.2
0