MakeItFrom.com
Menu (ESC)

Nickel 718 vs. C70400 Copper-nickel

Nickel 718 belongs to the nickel alloys classification, while C70400 copper-nickel belongs to the copper alloys. There are 26 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is nickel 718 and the bottom bar is C70400 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 75
45
Tensile Strength: Ultimate (UTS), MPa 930 to 1530
300 to 310
Tensile Strength: Yield (Proof), MPa 510 to 1330
95 to 230

Thermal Properties

Latent Heat of Fusion, J/g 310
210
Maximum Temperature: Mechanical, °C 980
210
Melting Completion (Liquidus), °C 1340
1120
Melting Onset (Solidus), °C 1260
1060
Specific Heat Capacity, J/kg-K 450
390
Thermal Conductivity, W/m-K 11
64
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
14
Electrical Conductivity: Equal Weight (Specific), % IACS 1.5
14

Otherwise Unclassified Properties

Base Metal Price, % relative 75
32
Density, g/cm3 8.3
8.9
Embodied Carbon, kg CO2/kg material 13
3.0
Embodied Energy, MJ/kg 190
47
Embodied Water, L/kg 250
300

Common Calculations

Resilience: Unit (Modulus of Resilience), kJ/m3 660 to 4560
38 to 220
Stiffness to Weight: Axial, points 13
7.5
Stiffness to Weight: Bending, points 23
19
Strength to Weight: Axial, points 31 to 51
9.3 to 9.8
Strength to Weight: Bending, points 25 to 35
11 to 12
Thermal Diffusivity, mm2/s 3.0
18
Thermal Shock Resistance, points 27 to 44
10 to 11

Alloy Composition

Aluminum (Al), % 0.2 to 0.8
0
Boron (B), % 0 to 0.0060
0
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 17 to 21
0
Cobalt (Co), % 0 to 1.0
0
Copper (Cu), % 0 to 0.3
89.8 to 93.6
Iron (Fe), % 11.1 to 24.6
1.3 to 1.7
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 0.35
0.3 to 0.8
Molybdenum (Mo), % 2.8 to 3.3
0
Nickel (Ni), % 50 to 55
4.8 to 6.2
Niobium (Nb), % 4.8 to 5.5
0
Phosphorus (P), % 0 to 0.015
0
Silicon (Si), % 0 to 0.35
0
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0.65 to 1.2
0
Zinc (Zn), % 0
0 to 1.0
Residuals, % 0
0 to 0.5