MakeItFrom.com
Menu (ESC)

Nickel 725 vs. C93200 Bronze

Nickel 725 belongs to the nickel alloys classification, while C93200 bronze belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is nickel 725 and the bottom bar is C93200 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
100
Elongation at Break, % 34
20
Fatigue Strength, MPa 260
110
Poisson's Ratio 0.29
0.35
Shear Modulus, GPa 78
38
Tensile Strength: Ultimate (UTS), MPa 860
240
Tensile Strength: Yield (Proof), MPa 350
130

Thermal Properties

Latent Heat of Fusion, J/g 320
180
Maximum Temperature: Mechanical, °C 980
160
Melting Completion (Liquidus), °C 1340
980
Melting Onset (Solidus), °C 1270
850
Specific Heat Capacity, J/kg-K 440
360
Thermal Expansion, µm/m-K 13
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
12
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
12

Otherwise Unclassified Properties

Base Metal Price, % relative 75
32
Density, g/cm3 8.5
8.8
Embodied Carbon, kg CO2/kg material 13
3.2
Embodied Energy, MJ/kg 190
52
Embodied Water, L/kg 270
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 240
40
Resilience: Unit (Modulus of Resilience), kJ/m3 300
76
Stiffness to Weight: Axial, points 13
6.5
Stiffness to Weight: Bending, points 23
18
Strength to Weight: Axial, points 28
7.5
Strength to Weight: Bending, points 24
9.7
Thermal Shock Resistance, points 23
9.3

Alloy Composition

Aluminum (Al), % 0 to 0.35
0 to 0.0050
Antimony (Sb), % 0
0 to 0.35
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 19 to 22.5
0
Copper (Cu), % 0
81 to 85
Iron (Fe), % 2.3 to 15.3
0 to 0.2
Lead (Pb), % 0
6.0 to 8.0
Manganese (Mn), % 0 to 0.35
0
Molybdenum (Mo), % 7.0 to 9.5
0
Nickel (Ni), % 55 to 59
0 to 1.0
Niobium (Nb), % 2.8 to 4.0
0
Phosphorus (P), % 0 to 0.015
0 to 1.5
Silicon (Si), % 0 to 0.2
0 to 0.0050
Sulfur (S), % 0 to 0.010
0 to 0.080
Tin (Sn), % 0
6.3 to 7.5
Titanium (Ti), % 1.0 to 1.7
0
Zinc (Zn), % 0
2.0 to 4.0
Residuals, % 0
0 to 1.0