MakeItFrom.com
Menu (ESC)

Nickel 725 vs. S43940 Stainless Steel

Nickel 725 belongs to the nickel alloys classification, while S43940 stainless steel belongs to the iron alloys. They have a modest 28% of their average alloy composition in common, which, by itself, doesn't mean much. There are 28 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is nickel 725 and the bottom bar is S43940 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 34
21
Fatigue Strength, MPa 260
180
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 78
77
Shear Strength, MPa 580
310
Tensile Strength: Ultimate (UTS), MPa 860
490
Tensile Strength: Yield (Proof), MPa 350
280

Thermal Properties

Latent Heat of Fusion, J/g 320
280
Maximum Temperature: Mechanical, °C 980
890
Melting Completion (Liquidus), °C 1340
1440
Melting Onset (Solidus), °C 1270
1400
Specific Heat Capacity, J/kg-K 440
480
Thermal Expansion, µm/m-K 13
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
3.4

Otherwise Unclassified Properties

Base Metal Price, % relative 75
12
Density, g/cm3 8.5
7.7
Embodied Carbon, kg CO2/kg material 13
2.6
Embodied Energy, MJ/kg 190
38
Embodied Water, L/kg 270
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 240
86
Resilience: Unit (Modulus of Resilience), kJ/m3 300
200
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 23
25
Strength to Weight: Axial, points 28
18
Strength to Weight: Bending, points 24
18
Thermal Shock Resistance, points 23
18

Alloy Composition

Aluminum (Al), % 0 to 0.35
0
Carbon (C), % 0 to 0.030
0 to 0.030
Chromium (Cr), % 19 to 22.5
17.5 to 18.5
Iron (Fe), % 2.3 to 15.3
78.2 to 82.1
Manganese (Mn), % 0 to 0.35
0 to 1.0
Molybdenum (Mo), % 7.0 to 9.5
0
Nickel (Ni), % 55 to 59
0
Niobium (Nb), % 2.8 to 4.0
0.3 to 0.6
Phosphorus (P), % 0 to 0.015
0 to 0.040
Silicon (Si), % 0 to 0.2
0 to 1.0
Sulfur (S), % 0 to 0.010
0 to 0.015
Titanium (Ti), % 1.0 to 1.7
0.1 to 0.6