MakeItFrom.com
Menu (ESC)

Nickel 725 vs. WE54A Magnesium

Nickel 725 belongs to the nickel alloys classification, while WE54A magnesium belongs to the magnesium alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is nickel 725 and the bottom bar is WE54A magnesium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
44
Elongation at Break, % 34
4.3 to 5.6
Fatigue Strength, MPa 260
98 to 130
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 78
17
Shear Strength, MPa 580
150 to 170
Tensile Strength: Ultimate (UTS), MPa 860
270 to 300
Tensile Strength: Yield (Proof), MPa 350
180

Thermal Properties

Latent Heat of Fusion, J/g 320
330
Maximum Temperature: Mechanical, °C 980
170
Melting Completion (Liquidus), °C 1340
640
Melting Onset (Solidus), °C 1270
570
Specific Heat Capacity, J/kg-K 440
960
Thermal Expansion, µm/m-K 13
25

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
10
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
47

Otherwise Unclassified Properties

Base Metal Price, % relative 75
34
Density, g/cm3 8.5
1.9
Embodied Carbon, kg CO2/kg material 13
29
Embodied Energy, MJ/kg 190
260
Embodied Water, L/kg 270
900

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 240
10 to 14
Resilience: Unit (Modulus of Resilience), kJ/m3 300
360 to 380
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 23
62
Strength to Weight: Axial, points 28
39 to 43
Strength to Weight: Bending, points 24
49 to 51
Thermal Shock Resistance, points 23
18 to 19

Alloy Composition

Aluminum (Al), % 0 to 0.35
0
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 19 to 22.5
0
Copper (Cu), % 0
0 to 0.030
Iron (Fe), % 2.3 to 15.3
0 to 0.010
Lithium (Li), % 0
0 to 0.2
Magnesium (Mg), % 0
88.7 to 93.4
Manganese (Mn), % 0 to 0.35
0 to 0.030
Molybdenum (Mo), % 7.0 to 9.5
0
Nickel (Ni), % 55 to 59
0 to 0.0050
Niobium (Nb), % 2.8 to 4.0
0
Phosphorus (P), % 0 to 0.015
0
Silicon (Si), % 0 to 0.2
0 to 0.010
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 1.0 to 1.7
0
Unspecified Rare Earths, % 0
1.5 to 4.0
Yttrium (Y), % 0
4.8 to 5.5
Zinc (Zn), % 0
0 to 0.2
Zirconium (Zr), % 0
0.4 to 1.0
Residuals, % 0
0 to 0.3