MakeItFrom.com
Menu (ESC)

Nickel 80A vs. 4006 Aluminum

Nickel 80A belongs to the nickel alloys classification, while 4006 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is nickel 80A and the bottom bar is 4006 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
69
Elongation at Break, % 22
3.4 to 24
Fatigue Strength, MPa 430
35 to 110
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 74
26
Shear Strength, MPa 660
70 to 91
Tensile Strength: Ultimate (UTS), MPa 1040
110 to 160
Tensile Strength: Yield (Proof), MPa 710
62 to 140

Thermal Properties

Latent Heat of Fusion, J/g 320
410
Maximum Temperature: Mechanical, °C 980
160
Melting Completion (Liquidus), °C 1360
640
Melting Onset (Solidus), °C 1310
620
Specific Heat Capacity, J/kg-K 470
900
Thermal Conductivity, W/m-K 11
220
Thermal Expansion, µm/m-K 13
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
56
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
180

Otherwise Unclassified Properties

Base Metal Price, % relative 55
9.0
Density, g/cm3 8.3
2.7
Embodied Carbon, kg CO2/kg material 9.8
8.1
Embodied Energy, MJ/kg 140
150
Embodied Water, L/kg 280
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 210
5.1 to 26
Resilience: Unit (Modulus of Resilience), kJ/m3 1300
28 to 130
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 23
50
Strength to Weight: Axial, points 35
11 to 16
Strength to Weight: Bending, points 27
19 to 24
Thermal Diffusivity, mm2/s 2.9
89
Thermal Shock Resistance, points 31
4.9 to 7.0

Alloy Composition

Aluminum (Al), % 0.5 to 1.8
97.4 to 98.7
Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 18 to 21
0 to 0.2
Copper (Cu), % 0
0 to 0.1
Iron (Fe), % 0 to 3.0
0.5 to 0.8
Magnesium (Mg), % 0
0 to 0.010
Manganese (Mn), % 0 to 1.0
0 to 0.050
Nickel (Ni), % 69.4 to 79.7
0
Silicon (Si), % 0 to 1.0
0.8 to 1.2
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 1.8 to 2.7
0
Zinc (Zn), % 0
0 to 0.050
Residuals, % 0
0 to 0.15