MakeItFrom.com
Menu (ESC)

Nickel 80A vs. 6105 Aluminum

Nickel 80A belongs to the nickel alloys classification, while 6105 aluminum belongs to the aluminum alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is nickel 80A and the bottom bar is 6105 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
68
Elongation at Break, % 22
9.0 to 16
Fatigue Strength, MPa 430
95 to 130
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 74
26
Shear Strength, MPa 660
120 to 170
Tensile Strength: Ultimate (UTS), MPa 1040
190 to 280
Tensile Strength: Yield (Proof), MPa 710
120 to 270

Thermal Properties

Latent Heat of Fusion, J/g 320
410
Maximum Temperature: Mechanical, °C 980
160
Melting Completion (Liquidus), °C 1360
650
Melting Onset (Solidus), °C 1310
600
Specific Heat Capacity, J/kg-K 470
900
Thermal Conductivity, W/m-K 11
180 to 190
Thermal Expansion, µm/m-K 13
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
46 to 50
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
150 to 170

Otherwise Unclassified Properties

Base Metal Price, % relative 55
9.5
Density, g/cm3 8.3
2.7
Embodied Carbon, kg CO2/kg material 9.8
8.3
Embodied Energy, MJ/kg 140
150
Embodied Water, L/kg 280
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 210
25 to 27
Resilience: Unit (Modulus of Resilience), kJ/m3 1300
100 to 550
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 23
51
Strength to Weight: Axial, points 35
20 to 29
Strength to Weight: Bending, points 27
28 to 35
Thermal Diffusivity, mm2/s 2.9
72 to 79
Thermal Shock Resistance, points 31
8.6 to 12

Alloy Composition

Aluminum (Al), % 0.5 to 1.8
97.2 to 99
Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 18 to 21
0 to 0.1
Copper (Cu), % 0
0 to 0.1
Iron (Fe), % 0 to 3.0
0 to 0.35
Magnesium (Mg), % 0
0.45 to 0.8
Manganese (Mn), % 0 to 1.0
0 to 0.1
Nickel (Ni), % 69.4 to 79.7
0
Silicon (Si), % 0 to 1.0
0.6 to 1.0
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 1.8 to 2.7
0 to 0.1
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15