MakeItFrom.com
Menu (ESC)

Nickel 80A vs. 6262A Aluminum

Nickel 80A belongs to the nickel alloys classification, while 6262A aluminum belongs to the aluminum alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is nickel 80A and the bottom bar is 6262A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
68
Elongation at Break, % 22
4.5 to 11
Fatigue Strength, MPa 430
94 to 110
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 74
26
Shear Strength, MPa 660
190 to 240
Tensile Strength: Ultimate (UTS), MPa 1040
310 to 410
Tensile Strength: Yield (Proof), MPa 710
270 to 370

Thermal Properties

Latent Heat of Fusion, J/g 320
400
Maximum Temperature: Mechanical, °C 980
160
Melting Completion (Liquidus), °C 1360
640
Melting Onset (Solidus), °C 1310
580
Specific Heat Capacity, J/kg-K 470
890
Thermal Conductivity, W/m-K 11
170
Thermal Expansion, µm/m-K 13
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
45
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
140

Otherwise Unclassified Properties

Base Metal Price, % relative 55
11
Density, g/cm3 8.3
2.8
Embodied Carbon, kg CO2/kg material 9.8
8.4
Embodied Energy, MJ/kg 140
150
Embodied Water, L/kg 280
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 210
17 to 34
Resilience: Unit (Modulus of Resilience), kJ/m3 1300
540 to 1000
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 23
49
Strength to Weight: Axial, points 35
31 to 41
Strength to Weight: Bending, points 27
36 to 44
Thermal Diffusivity, mm2/s 2.9
67
Thermal Shock Resistance, points 31
14 to 18

Alloy Composition

Aluminum (Al), % 0.5 to 1.8
94.2 to 97.8
Bismuth (Bi), % 0
0.4 to 0.9
Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 18 to 21
0.040 to 0.14
Copper (Cu), % 0
0.15 to 0.4
Iron (Fe), % 0 to 3.0
0 to 0.7
Magnesium (Mg), % 0
0.8 to 1.2
Manganese (Mn), % 0 to 1.0
0 to 0.15
Nickel (Ni), % 69.4 to 79.7
0
Silicon (Si), % 0 to 1.0
0.4 to 0.8
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0.4 to 1.0
Titanium (Ti), % 1.8 to 2.7
0 to 0.1
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15