MakeItFrom.com
Menu (ESC)

Nickel 80A vs. 7020 Aluminum

Nickel 80A belongs to the nickel alloys classification, while 7020 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is nickel 80A and the bottom bar is 7020 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
70
Elongation at Break, % 22
8.4 to 14
Fatigue Strength, MPa 430
110 to 130
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 74
26
Shear Strength, MPa 660
110 to 230
Tensile Strength: Ultimate (UTS), MPa 1040
190 to 390
Tensile Strength: Yield (Proof), MPa 710
120 to 310

Thermal Properties

Latent Heat of Fusion, J/g 320
380
Maximum Temperature: Mechanical, °C 980
210
Melting Completion (Liquidus), °C 1360
650
Melting Onset (Solidus), °C 1310
610
Specific Heat Capacity, J/kg-K 470
880
Thermal Conductivity, W/m-K 11
150
Thermal Expansion, µm/m-K 13
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
39
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
120

Otherwise Unclassified Properties

Base Metal Price, % relative 55
9.5
Density, g/cm3 8.3
2.9
Embodied Carbon, kg CO2/kg material 9.8
8.3
Embodied Energy, MJ/kg 140
150
Embodied Water, L/kg 280
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 210
23 to 46
Resilience: Unit (Modulus of Resilience), kJ/m3 1300
110 to 690
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 23
47
Strength to Weight: Axial, points 35
18 to 37
Strength to Weight: Bending, points 27
25 to 41
Thermal Diffusivity, mm2/s 2.9
59
Thermal Shock Resistance, points 31
8.3 to 17

Alloy Composition

Aluminum (Al), % 0.5 to 1.8
91.2 to 94.8
Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 18 to 21
0.1 to 0.35
Copper (Cu), % 0
0 to 0.2
Iron (Fe), % 0 to 3.0
0 to 0.4
Magnesium (Mg), % 0
1.0 to 1.4
Manganese (Mn), % 0 to 1.0
0.050 to 0.5
Nickel (Ni), % 69.4 to 79.7
0
Silicon (Si), % 0 to 1.0
0 to 0.35
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 1.8 to 2.7
0 to 0.25
Zinc (Zn), % 0
4.0 to 5.0
Zirconium (Zr), % 0
0.080 to 0.25
Residuals, % 0
0 to 0.15