MakeItFrom.com
Menu (ESC)

Nickel 80A vs. A206.0 Aluminum

Nickel 80A belongs to the nickel alloys classification, while A206.0 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is nickel 80A and the bottom bar is A206.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
70
Elongation at Break, % 22
4.2 to 10
Fatigue Strength, MPa 430
90 to 180
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 74
26
Shear Strength, MPa 660
260
Tensile Strength: Ultimate (UTS), MPa 1040
390 to 440
Tensile Strength: Yield (Proof), MPa 710
250 to 380

Thermal Properties

Latent Heat of Fusion, J/g 320
390
Maximum Temperature: Mechanical, °C 980
170
Melting Completion (Liquidus), °C 1360
670
Melting Onset (Solidus), °C 1310
550
Specific Heat Capacity, J/kg-K 470
880
Thermal Conductivity, W/m-K 11
130
Thermal Expansion, µm/m-K 13
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
30
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
90

Otherwise Unclassified Properties

Base Metal Price, % relative 55
11
Density, g/cm3 8.3
3.0
Embodied Carbon, kg CO2/kg material 9.8
8.0
Embodied Energy, MJ/kg 140
150
Embodied Water, L/kg 280
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 210
16 to 37
Resilience: Unit (Modulus of Resilience), kJ/m3 1300
440 to 1000
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 23
46
Strength to Weight: Axial, points 35
36 to 41
Strength to Weight: Bending, points 27
39 to 43
Thermal Diffusivity, mm2/s 2.9
48
Thermal Shock Resistance, points 31
17 to 19

Alloy Composition

Aluminum (Al), % 0.5 to 1.8
93.9 to 95.7
Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 18 to 21
0
Copper (Cu), % 0
4.2 to 5.0
Iron (Fe), % 0 to 3.0
0 to 0.1
Magnesium (Mg), % 0
0 to 0.15
Manganese (Mn), % 0 to 1.0
0 to 0.2
Nickel (Ni), % 69.4 to 79.7
0 to 0.050
Silicon (Si), % 0 to 1.0
0 to 0.050
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0 to 0.050
Titanium (Ti), % 1.8 to 2.7
0.15 to 0.3
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15