MakeItFrom.com
Menu (ESC)

Nickel 80A vs. A444.0 Aluminum

Nickel 80A belongs to the nickel alloys classification, while A444.0 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is nickel 80A and the bottom bar is A444.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
70
Elongation at Break, % 22
18
Fatigue Strength, MPa 430
37
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 74
26
Tensile Strength: Ultimate (UTS), MPa 1040
160
Tensile Strength: Yield (Proof), MPa 710
66

Thermal Properties

Latent Heat of Fusion, J/g 320
500
Maximum Temperature: Mechanical, °C 980
170
Melting Completion (Liquidus), °C 1360
630
Melting Onset (Solidus), °C 1310
590
Specific Heat Capacity, J/kg-K 470
900
Thermal Conductivity, W/m-K 11
160
Thermal Expansion, µm/m-K 13
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
41
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
140

Otherwise Unclassified Properties

Base Metal Price, % relative 55
9.5
Density, g/cm3 8.3
2.6
Embodied Carbon, kg CO2/kg material 9.8
7.9
Embodied Energy, MJ/kg 140
150
Embodied Water, L/kg 280
1110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 210
24
Resilience: Unit (Modulus of Resilience), kJ/m3 1300
31
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 23
53
Strength to Weight: Axial, points 35
17
Strength to Weight: Bending, points 27
25
Thermal Diffusivity, mm2/s 2.9
68
Thermal Shock Resistance, points 31
7.3

Alloy Composition

Aluminum (Al), % 0.5 to 1.8
91.6 to 93.5
Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 18 to 21
0
Copper (Cu), % 0
0 to 0.1
Iron (Fe), % 0 to 3.0
0 to 0.2
Magnesium (Mg), % 0
0 to 0.050
Manganese (Mn), % 0 to 1.0
0 to 0.1
Nickel (Ni), % 69.4 to 79.7
0
Silicon (Si), % 0 to 1.0
6.5 to 7.5
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 1.8 to 2.7
0 to 0.2
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15