MakeItFrom.com
Menu (ESC)

Nickel 80A vs. ACI-ASTM CA40F Steel

Nickel 80A belongs to the nickel alloys classification, while ACI-ASTM CA40F steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is nickel 80A and the bottom bar is ACI-ASTM CA40F steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 22
13
Fatigue Strength, MPa 430
320
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 74
76
Tensile Strength: Ultimate (UTS), MPa 1040
770
Tensile Strength: Yield (Proof), MPa 710
550

Thermal Properties

Latent Heat of Fusion, J/g 320
280
Maximum Temperature: Mechanical, °C 980
750
Melting Completion (Liquidus), °C 1360
1430
Melting Onset (Solidus), °C 1310
1390
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 11
27
Thermal Expansion, µm/m-K 13
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
3.0
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
3.5

Otherwise Unclassified Properties

Base Metal Price, % relative 55
7.5
Density, g/cm3 8.3
7.7
Embodied Carbon, kg CO2/kg material 9.8
2.0
Embodied Energy, MJ/kg 140
28
Embodied Water, L/kg 280
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 210
94
Resilience: Unit (Modulus of Resilience), kJ/m3 1300
790
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 23
25
Strength to Weight: Axial, points 35
28
Strength to Weight: Bending, points 27
24
Thermal Diffusivity, mm2/s 2.9
7.2
Thermal Shock Resistance, points 31
28

Alloy Composition

Aluminum (Al), % 0.5 to 1.8
0
Carbon (C), % 0 to 0.1
0.2 to 0.4
Chromium (Cr), % 18 to 21
11.5 to 14
Iron (Fe), % 0 to 3.0
81.6 to 88.3
Manganese (Mn), % 0 to 1.0
0 to 1.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 69.4 to 79.7
0 to 1.0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 1.5
Sulfur (S), % 0 to 0.015
0.2 to 0.4
Titanium (Ti), % 1.8 to 2.7
0