MakeItFrom.com
Menu (ESC)

Nickel 80A vs. ASTM Grade LC2-1 Steel

Nickel 80A belongs to the nickel alloys classification, while ASTM grade LC2-1 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is nickel 80A and the bottom bar is ASTM grade LC2-1 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 22
20
Fatigue Strength, MPa 430
430
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 74
73
Tensile Strength: Ultimate (UTS), MPa 1040
810
Tensile Strength: Yield (Proof), MPa 710
630

Thermal Properties

Latent Heat of Fusion, J/g 320
260
Maximum Temperature: Mechanical, °C 980
450
Melting Completion (Liquidus), °C 1360
1460
Melting Onset (Solidus), °C 1310
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 11
46
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
8.0
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
9.1

Otherwise Unclassified Properties

Base Metal Price, % relative 55
5.0
Density, g/cm3 8.3
7.9
Embodied Carbon, kg CO2/kg material 9.8
1.9
Embodied Energy, MJ/kg 140
25
Embodied Water, L/kg 280
60

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 210
150
Resilience: Unit (Modulus of Resilience), kJ/m3 1300
1040
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 23
24
Strength to Weight: Axial, points 35
29
Strength to Weight: Bending, points 27
25
Thermal Diffusivity, mm2/s 2.9
12
Thermal Shock Resistance, points 31
24

Alloy Composition

Aluminum (Al), % 0.5 to 1.8
0
Carbon (C), % 0 to 0.1
0 to 0.22
Chromium (Cr), % 18 to 21
1.4 to 1.9
Iron (Fe), % 0 to 3.0
92.5 to 95.3
Manganese (Mn), % 0 to 1.0
0.55 to 0.75
Molybdenum (Mo), % 0
0.3 to 0.6
Nickel (Ni), % 69.4 to 79.7
2.5 to 3.5
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 0.5
Sulfur (S), % 0 to 0.015
0 to 0.045
Titanium (Ti), % 1.8 to 2.7
0