MakeItFrom.com
Menu (ESC)

Nickel 80A vs. AWS E2553

Nickel 80A belongs to the nickel alloys classification, while AWS E2553 belongs to the iron alloys. They have a modest 30% of their average alloy composition in common, which, by itself, doesn't mean much. There are 24 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is nickel 80A and the bottom bar is AWS E2553.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 22
17
Poisson's Ratio 0.29
0.27
Shear Modulus, GPa 74
80
Tensile Strength: Ultimate (UTS), MPa 1040
850

Thermal Properties

Latent Heat of Fusion, J/g 320
300
Melting Completion (Liquidus), °C 1360
1440
Melting Onset (Solidus), °C 1310
1390
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 11
16
Thermal Expansion, µm/m-K 13
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 55
21
Density, g/cm3 8.3
7.8
Embodied Carbon, kg CO2/kg material 9.8
4.0
Embodied Energy, MJ/kg 140
56
Embodied Water, L/kg 280
190

Common Calculations

Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 23
25
Strength to Weight: Axial, points 35
30
Strength to Weight: Bending, points 27
26
Thermal Diffusivity, mm2/s 2.9
4.3
Thermal Shock Resistance, points 31
21

Alloy Composition

Aluminum (Al), % 0.5 to 1.8
0
Carbon (C), % 0 to 0.1
0 to 0.060
Chromium (Cr), % 18 to 21
24 to 27
Copper (Cu), % 0
1.5 to 2.5
Iron (Fe), % 0 to 3.0
55.2 to 64.5
Manganese (Mn), % 0 to 1.0
0.5 to 1.5
Molybdenum (Mo), % 0
2.9 to 3.9
Nickel (Ni), % 69.4 to 79.7
6.5 to 8.5
Nitrogen (N), % 0
0.1 to 0.25
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.015
0 to 0.030
Titanium (Ti), % 1.8 to 2.7
0