MakeItFrom.com
Menu (ESC)

Nickel 80A vs. EN 1.6579 Steel

Nickel 80A belongs to the nickel alloys classification, while EN 1.6579 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is nickel 80A and the bottom bar is EN 1.6579 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 22
11 to 14
Fatigue Strength, MPa 430
380 to 570
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 74
73
Tensile Strength: Ultimate (UTS), MPa 1040
850 to 980
Tensile Strength: Yield (Proof), MPa 710
600 to 910

Thermal Properties

Latent Heat of Fusion, J/g 320
250
Maximum Temperature: Mechanical, °C 980
440
Melting Completion (Liquidus), °C 1360
1460
Melting Onset (Solidus), °C 1310
1410
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 11
39
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
7.7
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
8.8

Otherwise Unclassified Properties

Base Metal Price, % relative 55
3.7
Density, g/cm3 8.3
7.8
Embodied Carbon, kg CO2/kg material 9.8
1.7
Embodied Energy, MJ/kg 140
22
Embodied Water, L/kg 280
56

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 210
100 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 1300
950 to 2210
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 23
24
Strength to Weight: Axial, points 35
30 to 35
Strength to Weight: Bending, points 27
25 to 28
Thermal Diffusivity, mm2/s 2.9
11
Thermal Shock Resistance, points 31
25 to 29

Alloy Composition

Aluminum (Al), % 0.5 to 1.8
0
Carbon (C), % 0 to 0.1
0.32 to 0.38
Chromium (Cr), % 18 to 21
1.4 to 1.7
Iron (Fe), % 0 to 3.0
94.2 to 96.1
Manganese (Mn), % 0 to 1.0
0.6 to 1.0
Molybdenum (Mo), % 0
0.15 to 0.35
Nickel (Ni), % 69.4 to 79.7
1.4 to 1.7
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 1.0
0 to 0.6
Sulfur (S), % 0 to 0.015
0 to 0.030
Titanium (Ti), % 1.8 to 2.7
0