MakeItFrom.com
Menu (ESC)

Nickel 80A vs. C14700 Copper

Nickel 80A belongs to the nickel alloys classification, while C14700 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is nickel 80A and the bottom bar is C14700 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 22
9.1 to 35
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 74
43
Shear Strength, MPa 660
160 to 190
Tensile Strength: Ultimate (UTS), MPa 1040
240 to 320
Tensile Strength: Yield (Proof), MPa 710
85 to 250

Thermal Properties

Latent Heat of Fusion, J/g 320
210
Maximum Temperature: Mechanical, °C 980
200
Melting Completion (Liquidus), °C 1360
1080
Melting Onset (Solidus), °C 1310
1070
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 11
370
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
95
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
96

Otherwise Unclassified Properties

Base Metal Price, % relative 55
30
Density, g/cm3 8.3
8.9
Embodied Carbon, kg CO2/kg material 9.8
2.6
Embodied Energy, MJ/kg 140
41
Embodied Water, L/kg 280
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 210
25 to 65
Resilience: Unit (Modulus of Resilience), kJ/m3 1300
31 to 280
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 23
18
Strength to Weight: Axial, points 35
7.3 to 10
Strength to Weight: Bending, points 27
9.5 to 12
Thermal Diffusivity, mm2/s 2.9
110
Thermal Shock Resistance, points 31
8.4 to 12

Alloy Composition

Aluminum (Al), % 0.5 to 1.8
0
Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 18 to 21
0
Copper (Cu), % 0
99.395 to 99.798
Iron (Fe), % 0 to 3.0
0
Manganese (Mn), % 0 to 1.0
0
Nickel (Ni), % 69.4 to 79.7
0
Phosphorus (P), % 0
0.0020 to 0.0050
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.015
0.2 to 0.5
Titanium (Ti), % 1.8 to 2.7
0
Residuals, % 0
0 to 0.1