MakeItFrom.com
Menu (ESC)

Nickel 80A vs. C19700 Copper

Nickel 80A belongs to the nickel alloys classification, while C19700 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is nickel 80A and the bottom bar is C19700 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 22
2.4 to 13
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 74
43
Shear Strength, MPa 660
240 to 300
Tensile Strength: Ultimate (UTS), MPa 1040
400 to 530
Tensile Strength: Yield (Proof), MPa 710
330 to 520

Thermal Properties

Latent Heat of Fusion, J/g 320
210
Maximum Temperature: Mechanical, °C 980
200
Melting Completion (Liquidus), °C 1360
1090
Melting Onset (Solidus), °C 1310
1040
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 11
250
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
86 to 88
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
87 to 89

Otherwise Unclassified Properties

Base Metal Price, % relative 55
30
Density, g/cm3 8.3
8.9
Embodied Carbon, kg CO2/kg material 9.8
2.6
Embodied Energy, MJ/kg 140
41
Embodied Water, L/kg 280
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 210
12 to 49
Resilience: Unit (Modulus of Resilience), kJ/m3 1300
460 to 1160
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 23
18
Strength to Weight: Axial, points 35
12 to 16
Strength to Weight: Bending, points 27
14 to 16
Thermal Diffusivity, mm2/s 2.9
73
Thermal Shock Resistance, points 31
14 to 19

Alloy Composition

Aluminum (Al), % 0.5 to 1.8
0
Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 18 to 21
0
Cobalt (Co), % 0
0 to 0.050
Copper (Cu), % 0
97.4 to 99.59
Iron (Fe), % 0 to 3.0
0.3 to 1.2
Lead (Pb), % 0
0 to 0.050
Magnesium (Mg), % 0
0.010 to 0.2
Manganese (Mn), % 0 to 1.0
0 to 0.050
Nickel (Ni), % 69.4 to 79.7
0 to 0.050
Phosphorus (P), % 0
0.1 to 0.4
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0 to 0.2
Titanium (Ti), % 1.8 to 2.7
0
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.2