MakeItFrom.com
Menu (ESC)

Nickel 80A vs. C61300 Bronze

Nickel 80A belongs to the nickel alloys classification, while C61300 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is nickel 80A and the bottom bar is C61300 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 22
34 to 40
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 74
43
Shear Strength, MPa 660
370 to 390
Tensile Strength: Ultimate (UTS), MPa 1040
550 to 580
Tensile Strength: Yield (Proof), MPa 710
230 to 310

Thermal Properties

Latent Heat of Fusion, J/g 320
220
Maximum Temperature: Mechanical, °C 980
210
Melting Completion (Liquidus), °C 1360
1050
Melting Onset (Solidus), °C 1310
1040
Specific Heat Capacity, J/kg-K 470
420
Thermal Conductivity, W/m-K 11
55
Thermal Expansion, µm/m-K 13
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
12
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
13

Otherwise Unclassified Properties

Base Metal Price, % relative 55
29
Density, g/cm3 8.3
8.5
Embodied Carbon, kg CO2/kg material 9.8
3.0
Embodied Energy, MJ/kg 140
49
Embodied Water, L/kg 280
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 210
150 to 190
Resilience: Unit (Modulus of Resilience), kJ/m3 1300
230 to 410
Stiffness to Weight: Axial, points 13
7.5
Stiffness to Weight: Bending, points 23
19
Strength to Weight: Axial, points 35
18 to 19
Strength to Weight: Bending, points 27
18
Thermal Diffusivity, mm2/s 2.9
15
Thermal Shock Resistance, points 31
19 to 20

Alloy Composition

Aluminum (Al), % 0.5 to 1.8
6.0 to 7.5
Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 18 to 21
0
Copper (Cu), % 0
88 to 91.8
Iron (Fe), % 0 to 3.0
2.0 to 3.0
Lead (Pb), % 0
0 to 0.010
Manganese (Mn), % 0 to 1.0
0 to 0.2
Nickel (Ni), % 69.4 to 79.7
0 to 0.15
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 0 to 1.0
0 to 0.1
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0.2 to 0.5
Titanium (Ti), % 1.8 to 2.7
0
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.2