MakeItFrom.com
Menu (ESC)

Nickel 80A vs. C66700 Brass

Nickel 80A belongs to the nickel alloys classification, while C66700 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is nickel 80A and the bottom bar is C66700 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 22
2.0 to 58
Poisson's Ratio 0.29
0.31
Shear Modulus, GPa 74
41
Shear Strength, MPa 660
250 to 530
Tensile Strength: Ultimate (UTS), MPa 1040
340 to 690
Tensile Strength: Yield (Proof), MPa 710
100 to 640

Thermal Properties

Latent Heat of Fusion, J/g 320
180
Maximum Temperature: Mechanical, °C 980
140
Melting Completion (Liquidus), °C 1360
1090
Melting Onset (Solidus), °C 1310
1050
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 11
97
Thermal Expansion, µm/m-K 13
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
17
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
19

Otherwise Unclassified Properties

Base Metal Price, % relative 55
25
Density, g/cm3 8.3
8.2
Embodied Carbon, kg CO2/kg material 9.8
2.7
Embodied Energy, MJ/kg 140
45
Embodied Water, L/kg 280
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 210
13 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 1300
49 to 1900
Stiffness to Weight: Axial, points 13
7.3
Stiffness to Weight: Bending, points 23
19
Strength to Weight: Axial, points 35
11 to 23
Strength to Weight: Bending, points 27
13 to 21
Thermal Diffusivity, mm2/s 2.9
30
Thermal Shock Resistance, points 31
11 to 23

Alloy Composition

Aluminum (Al), % 0.5 to 1.8
0
Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 18 to 21
0
Copper (Cu), % 0
68.5 to 71.5
Iron (Fe), % 0 to 3.0
0 to 0.1
Lead (Pb), % 0
0 to 0.070
Manganese (Mn), % 0 to 1.0
0.8 to 1.5
Nickel (Ni), % 69.4 to 79.7
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 1.8 to 2.7
0
Zinc (Zn), % 0
26.3 to 30.7
Residuals, % 0
0 to 0.5