MakeItFrom.com
Menu (ESC)

Nickel 80A vs. C82400 Copper

Nickel 80A belongs to the nickel alloys classification, while C82400 copper belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is nickel 80A and the bottom bar is C82400 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 22
1.0 to 20
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 74
45
Tensile Strength: Ultimate (UTS), MPa 1040
500 to 1030
Tensile Strength: Yield (Proof), MPa 710
260 to 970

Thermal Properties

Latent Heat of Fusion, J/g 320
230
Maximum Temperature: Mechanical, °C 980
270
Melting Completion (Liquidus), °C 1360
1000
Melting Onset (Solidus), °C 1310
900
Specific Heat Capacity, J/kg-K 470
380
Thermal Conductivity, W/m-K 11
130
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
25
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
26

Otherwise Unclassified Properties

Density, g/cm3 8.3
8.8
Embodied Carbon, kg CO2/kg material 9.8
8.9
Embodied Energy, MJ/kg 140
140
Embodied Water, L/kg 280
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 210
10 to 83
Resilience: Unit (Modulus of Resilience), kJ/m3 1300
270 to 3870
Stiffness to Weight: Axial, points 13
7.6
Stiffness to Weight: Bending, points 23
19
Strength to Weight: Axial, points 35
16 to 33
Strength to Weight: Bending, points 27
16 to 26
Thermal Diffusivity, mm2/s 2.9
39
Thermal Shock Resistance, points 31
17 to 36

Alloy Composition

Aluminum (Al), % 0.5 to 1.8
0 to 0.15
Beryllium (Be), % 0
1.6 to 1.9
Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 18 to 21
0 to 0.1
Cobalt (Co), % 0
0.2 to 0.65
Copper (Cu), % 0
96 to 98.2
Iron (Fe), % 0 to 3.0
0 to 0.2
Lead (Pb), % 0
0 to 0.020
Manganese (Mn), % 0 to 1.0
0
Nickel (Ni), % 69.4 to 79.7
0 to 0.2
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0 to 0.1
Titanium (Ti), % 1.8 to 2.7
0 to 0.12
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.5