MakeItFrom.com
Menu (ESC)

Nickel 80A vs. C90500 Gun Metal

Nickel 80A belongs to the nickel alloys classification, while C90500 gun metal belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is nickel 80A and the bottom bar is C90500 gun metal.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 22
20
Fatigue Strength, MPa 430
90
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 74
40
Tensile Strength: Ultimate (UTS), MPa 1040
320
Tensile Strength: Yield (Proof), MPa 710
160

Thermal Properties

Latent Heat of Fusion, J/g 320
190
Maximum Temperature: Mechanical, °C 980
170
Melting Completion (Liquidus), °C 1360
1000
Melting Onset (Solidus), °C 1310
850
Specific Heat Capacity, J/kg-K 470
370
Thermal Conductivity, W/m-K 11
75
Thermal Expansion, µm/m-K 13
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
11
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
11

Otherwise Unclassified Properties

Base Metal Price, % relative 55
35
Density, g/cm3 8.3
8.7
Embodied Carbon, kg CO2/kg material 9.8
3.6
Embodied Energy, MJ/kg 140
59
Embodied Water, L/kg 280
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 210
54
Resilience: Unit (Modulus of Resilience), kJ/m3 1300
110
Stiffness to Weight: Axial, points 13
6.9
Stiffness to Weight: Bending, points 23
18
Strength to Weight: Axial, points 35
10
Strength to Weight: Bending, points 27
12
Thermal Diffusivity, mm2/s 2.9
23
Thermal Shock Resistance, points 31
12

Alloy Composition

Aluminum (Al), % 0.5 to 1.8
0 to 0.0050
Antimony (Sb), % 0
0 to 0.2
Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 18 to 21
0
Copper (Cu), % 0
86 to 89
Iron (Fe), % 0 to 3.0
0 to 0.2
Lead (Pb), % 0
0 to 0.3
Manganese (Mn), % 0 to 1.0
0
Nickel (Ni), % 69.4 to 79.7
0 to 1.0
Phosphorus (P), % 0
0 to 1.5
Silicon (Si), % 0 to 1.0
0 to 0.0050
Sulfur (S), % 0 to 0.015
0 to 0.050
Tin (Sn), % 0
9.0 to 11
Titanium (Ti), % 1.8 to 2.7
0
Zinc (Zn), % 0
1.0 to 3.0
Residuals, % 0
0 to 0.3