MakeItFrom.com
Menu (ESC)

Nickel 80A vs. C94800 Bronze

Nickel 80A belongs to the nickel alloys classification, while C94800 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is nickel 80A and the bottom bar is C94800 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 22
22
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 74
43
Tensile Strength: Ultimate (UTS), MPa 1040
310
Tensile Strength: Yield (Proof), MPa 710
160

Thermal Properties

Latent Heat of Fusion, J/g 320
200
Maximum Temperature: Mechanical, °C 980
190
Melting Completion (Liquidus), °C 1360
1030
Melting Onset (Solidus), °C 1310
900
Specific Heat Capacity, J/kg-K 470
380
Thermal Conductivity, W/m-K 11
39
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
12
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
12

Otherwise Unclassified Properties

Base Metal Price, % relative 55
34
Density, g/cm3 8.3
8.8
Embodied Carbon, kg CO2/kg material 9.8
3.5
Embodied Energy, MJ/kg 140
56
Embodied Water, L/kg 280
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 210
58
Resilience: Unit (Modulus of Resilience), kJ/m3 1300
110
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 23
18
Strength to Weight: Axial, points 35
9.8
Strength to Weight: Bending, points 27
12
Thermal Diffusivity, mm2/s 2.9
12
Thermal Shock Resistance, points 31
11

Alloy Composition

Aluminum (Al), % 0.5 to 1.8
0 to 0.0050
Antimony (Sb), % 0
0 to 0.15
Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 18 to 21
0
Copper (Cu), % 0
84 to 89
Iron (Fe), % 0 to 3.0
0 to 0.25
Lead (Pb), % 0
0.3 to 1.0
Manganese (Mn), % 0 to 1.0
0 to 0.2
Nickel (Ni), % 69.4 to 79.7
4.5 to 6.0
Phosphorus (P), % 0
0 to 0.050
Silicon (Si), % 0 to 1.0
0 to 0.0050
Sulfur (S), % 0 to 0.015
0 to 0.050
Tin (Sn), % 0
4.5 to 6.0
Titanium (Ti), % 1.8 to 2.7
0
Zinc (Zn), % 0
1.0 to 2.5
Residuals, % 0
0 to 1.3